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Learning-based Robust Motion Planning with Guaranteed Stability:
A Contraction Theory Approach

Hiroyasu Tsukamoto and Soon-Jo Chung

Abstract—This paper presents Learning-based Autonomous
Guidance with RObustness and Stability guarantees (LAG-
ROS), which provides machine learning-based nonlinear motion
planners with formal robustness and stability guarantees, by
designing a differential Lyapunov function using contraction
theory. LAG-ROS utilizes a neural network to model a robust
tracking controller independently of a target trajectory, for
which we show that the Euclidean distance between the target
and controlled trajectories is exponentially bounded linearly
in the learning error, even under the existence of bounded
external disturbances. We also present a convex optimization
approach that minimizes the steady-state bound of the tracking
error to construct the robust control law for neural network
training. The journal version of this paper (IEEE Robotics
and Automation Letters (RA-L), to appear, 2021) with detailed
mathematical proofs and simulation results can be found in
https://arxiv.org/abs/2102.12668 [1].

Index Terms—Machine Learning for Robot Control, Ro-
bust/Adaptive Control, and Optimization & Optimal Control.

I. INTRODUCTION

Learning-based guidance and control designs of nonlinear
systems have been an emerging area of research since the rise
of neural networks and reinforcement learning [2], [3]. These
techniques can be categorized into model-free and model-
based methods, where each of them has pros and cons. The
former approach is supposed to learn desired optimal policies
which work robustly using training data obtained in real-world
environments, making them not suitable for situations where
sampling large training datasets is difficult. Also, proving
stability and robustness properties of such model-free systems
is challenging in general, although some approaches do ex-
ist [4], [5]. In contrast, the latter approach allows sampling
as much data as we want to design optimal policies by, e.g.,
reinforcement learning [6], imitation learning [7], or both [8].
However, the learned controller could yield cascading errors
in the real-world environment if its nominal model poorly
represents the true underlying dynamics.

Control theoretical approaches to circumvent such diffi-
culties include robust Model Predictive Control (MPC) [9]
equipped with a feedback control law for stability and robust-
ness guarantees. Among these are contraction theory-based
robust control [10]–[13], proposed to guarantee tracking to any
feasible target trajectory computed externally by existing mo-
tion planners, thereby robustly keeping the system trajectories
in a control invariant tube that satisfies given state constraints.
Although these provable guarantees are promising, they still
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Fig. 1. Illustration of LAG-ROS: Note that the LAG-ROS requires only one
neural net evaluation to get uL, and Theorem 1 provides its stability and
robustness guarantees. See [1] for details.

assume that the target trajectory can be computed in real-
time solving optimal motion planning problems, unlike most
learning-based control frameworks.

Contributions: In this study, we present Learning-based
Autonomous Guidance with Robustness, Optimality, and Sta-
bility guarantees (LAG-ROS) as a novel way to bridge the
gap between the learning-based and robust MPC-based mo-
tion planning techniques. In particular, whilst the LAG-ROS
requires only one neural network evaluation to get its control
input as in the machine learning schemes [6]–[8], its internal
contraction theory-based architecture still allows obtaining
formal stability and robustness guarantees, which have been
challenging to quantify without a contracting property [10]–
[13]. The proposed LAG-ROS framework depicted in Fig. 1
is summarized as follows.

The theoretical foundation of the LAG-ROS rests on con-
traction theory, which utilizes a contraction metric to char-
acterize a necessary and sufficient condition of exponential
incremental stability of nonlinear system trajectories [14].
The central result of this paper is that, if there exists a
control law which renders a nonlinear system contracting, or
equivalently, the closed-loop system has a contraction metric,
then the LAG-ROS trained to imitate the controller ensures
the Euclidean distance between the target and controlled
trajectories to be exponentially bounded in time, linearly in
the learning error and size of perturbation. This property
helps quantify how small the learning error should be in
practice, giving some intuition on the number of samples and
length of time in neural net training. We further show that
such a contracting control law and corresponding contraction
metric can be designed explicitly via convex optimization
using the method of CV-STEM [12], [13], [15], in order to
minimize a steady-state upper bound of the LAG-ROS tracking
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TABLE I
COMPARISON OF THE PROPOSED METHOD WITH THE LEARNING-BASED AND ROBUST TUBE-BASED MOTION PLANNERS.

Motion planning scheme Policy to be learned State tracking error ‖x− xd‖ Computational load
(a) Learning-based motion planner [6]–[8] (x,o, t) 7→ ud Increases exponentially (Lemma 1) One neural net evaluation
(b) Robust tube-based motion planner [9]–[13] (x,xd , t) 7→ u∗ Exponentially bounded (Theorem 2) Computation required to get xd
(c) Proposed method (LAG-ROS) (x,o, t) 7→ u∗ Exponentially bounded (Theorem 1) One neural net evaluation

error. Further details and simulation results can be found in
https://arxiv.org/abs/2102.12668 [1].

Notation: For x ∈ Rn and A ∈ Rn×m, we let ‖x‖, δx, and
‖A‖, denote the Euclidean norm, infinitesimal variation of x,
and induced 2-norm, respectively. For a square matrix A, we
use the notation A� 0, A� 0, A≺ 0, and A� 0 for the posi-
tive definite, positive semi-definite, negative definite, negative
semi-definite matrices, respectively, and sym(A)= (A+A>)/2.
Also, I ∈ Rn×n denotes the identity matrix.

II. LEARNING-BASED ROBUST MOTION PLANNING WITH
GUARANTEED STABILITY (LAG-ROS)

In this paper, we consider the following nonlinear dynamical
systems with a controller u ∈ Rm:

ẋ = f (x, t)+B(x, t)u+d(x, t) (1)
ẋd = f (xd , t)+B(xd , t)ud(xd ,o(t), t) (2)

where t ∈R≥0, f : Rn×R≥0 7→Rn, B : Rn×R≥0 7→Rn×m, x :
R≥0 7→Rn is the state trajectory of the true dynamical system
(1) perturbed by the bounded disturbance d : Rn×R≥0 7→ Rn

s.t. supx,t ‖d(x, t)‖ = d̄, o : R≥0 7→ Rp is an environment
observation, xd ∈ Rn and ud : Rn×Rp×R≥0 7→ Rn are the
target state trajectory and control policy given by existing
motion planning algorithms.

A. Problem Formulation of LAG-ROS

The problem of our interest is to find u that is computable
with one neural network evaluation and that guarantees expo-
nential boundedness of ‖x−xd‖ in (1) and (2), robustly against
the learning error and external disturbances. The objective of
this paper is thus not to develop new learning-based motion
planning algorithms that compute xd but to augment them
with formal robustness and stability guarantees. To this end,
let us briefly review the following existing motion planning
techniques and their inherent limitations:
(a) Learning-based motion planner [6]–[8]:

(x,o, t) 7→ ud , approximately.
(b) Robust tube-based motion planner [9]–[13]:

(x,xd , t) 7→ u∗, where u∗ is a robust tracking controller.
The robust tube-based motion planner (b) ensures that the

perturbed trajectories x of (1) stay in an exponentially bounded
error tube around the target trajectory xd of (2) [9]–[13] (see
Theorem 2). However, it requires the online computation of
xd as an input to their control policy, which is not realistic for
systems with limited computational resources.

The learning-based motion planner (a) circumvents this
issue by modeling the target policy (x,o, t) 7→ ud by a neural
network. In essence, our approach, to be proposed in Theo-
rem 1, is for providing (a) with the contraction theory-based
stability guarantees (b). We remark that (a) can only assure

the tracking error ‖x−xd‖ to be bounded by a function which
exponentially increases with time, as to be shown in Lemma 1
for comparison with LAG-ROS of Theorem 1.

B. Stability Guarantees of LAG-ROS

The approach of LAG-ROS bridges the gap between (a)
and (b) by ensuring that the distance between the target and
controlled trajectories to be exponentially bounded.
(c) Proposed approach (LAG-ROS):

(x,o, t) 7→ u∗, modeled by a neural network uL(x,o, t) of
Theorem 1, where o is a vector containing environment
observations (see Fig. 1) and u∗(x,xd , t) of (b) is viewed
as u∗(x,xd(x,o, t), t), which is a function of (x,o, t).

Theorem 1: Suppose that (1) is controlled to track (2) by
the LAG-ROS control policy uL(x,o, t), learned to satisfy

‖uL(x,o, t)−u∗(x,xd(x,o, t), t)‖ ≤ ε`, ∀x,o, t

where ε` ∈ [0,∞) is the learning error, u∗ is the target robust
control law of (b) (to be designed in Theorem 2), and xd is
given by the robust motion planner (b). Now consider the
following virtual system which has x of (1) and xd of (2)
as its particular solutions:

ẏ = ζ (y,x,xd , t)+dy(y, t) (3)

where ζ and dy are parameterized by y to verify ζ (y =
x,x,xd , t) = f (x, t) + B(x, t)u∗, ζ (y = xd ,x,xd , t) = f (xd , t) +
B(xd , t)ud(xd ,o(t), t), dy(y = x, t) = B(x, t)(uL− u∗) + d(x, t),
and dy(y = xd , t) = 0, and x, xd , ud , and d are as defined in
(1) and (2). Note that y = x and y = xd are indeed particular
solutions of (3). If ∃b̄ ∈ [0,∞) s.t. ‖B(x, t)‖ ≤ b̄, ∀x, t, and if
u∗ is constructed to satisfy the following partial contraction
conditions [16] with respect to y, for a contraction metric
M(y,x,xd , t) = Θ>Θ� 0 and α,ω,ω ∈ (0,∞):

Ṁ+2sym
(

M
∂ζ

∂y

)
�−2αM, ∀y,x,xd , t (4)

ω
−1I �M � ω

−1I, ∀y,x,xd , t (5)

then we have the following bound for e= x− xd :

‖e(t)‖ ≤R(0)
√

ωe−αt +
b̄ε`+ d̄

α

√
ω

ω
(1− e−αt) = r`(t) (6)

where R(t) =
∫ x

xd
‖Θδy(t)‖ for M = Θ>Θ.

Proof: Let V =
∫ x

xd
δy>Mδy =

∫ x
xd
‖Θδy‖2. Since

‖dy(x, t)‖ ≤ b̄ε`+ d̄ = d̄ε`
for dy in (3), the relation (4) gives

V̇ ≤
∫ x

xd

δy>
(

Ṁ+2sym
(

M
∂ζ

∂y

))
δy+2d̄ε`

∫ x

xd

‖Mδy‖

≤−2αV +
2d̄ε`√

ω

∫ x

xd

‖Θδy‖
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Since d(‖Θδy‖2)/dt = 2‖Θδy‖(d‖Θδy‖/dt), this implies that
Ṙ ≤ −αR + d̄ε`

/
√

ω . Therefore, applying the comparison
lemma [17, pp.102-103, pp.350-353] (i.e., if v̇1 ≤ h(v1, t) for
v1(0)≤ v2(0) and v̇2 = h(v2, t), then v1(t)≤ v2(t)), along with
the relation R(t)≥ ‖e(t)‖/

√
ω , results in (6)

Theorem 1 implies that the bound (6) decreases linearly
in the learning error ε` and disturbance d̄, and (1) controlled
by LAG-ROS is exponentially stable when ε` = 0 and d̄ = 0,
showing a great improvement over (a) which only gives an ex-
ponentially diverging bound as to be derived in Lemma 1 [6]–
[8]. This property permits quantifying how small ε` = 0 should
be to meet the required performance of motion planning,
giving some intuition on the neural network architecture. Also,
since we model u∗ by uL(x,o, t) independently of xd , it is
indeed implementable without solving any motion planning
problems online unlike robust motion planners (b) [9]–[13],
as outlined in Table I. If we can sample training data of u∗

explicitly considering the bound (6), the LAG-ROS control
enables guaranteeing given state constraints even with the
learning error ε` and external disturbance d(x, t) [1].

To appreciate the importance of the guarantees in The-
orem 1, let us additionally show that (a), which models
(x,o, t) 7→ ud , only leads to an exponentially diverging bound.

Lemma 1: Suppose that u of (1) is learned to satisfy

‖u(x,o, t)−ud(x,o, t)‖ ≤ ε`, ∀x,o, t (7)

for ud of (2) with the learning error ε` ∈ [0,∞), and that ∃b̄
s.t. ‖B(x, t)‖ ≤ b̄, ∀x, t. If fc` = f (x, t) + B(x, t)ud is Lips-
chitz, i.e., ∃L f ∈ [0,∞) s.t. ‖ fc`(x1, t)− fc`(x2, t)‖ ≤ L f ‖x1−
x2‖, ∀x1,x2 ∈ Rn, then we have the following bound:

‖e(t)‖ ≤ ‖e(0)‖eL f t +L−1
f (b̄ε`+ d̄)(eL f t −1). (8)

where e= x− xd , and x, xd , and d̄ are given in (1) and (2).
Proof: Integrating (1) and (2) for u in (7) yields ‖e(t)‖ ≤

‖e(0)‖+L f
∫ t

0 ‖e(τ)‖dτ +(b̄ε`+ d̄)t. Applying the Gronwall-
Bellman inequality [17, pp. 651] gives

‖e(t)‖ ≤‖e(0)‖+ d̄ε`
t +L f

∫ t

0
(‖e(0)‖+ d̄ε`

τ)eL f (t−τ)dτ

where d̄ε`
= b̄ε`+ d̄ and ∆τ = τ−t0. Thus, integration by parts

results in the desired relation (8).
Lemma 1 indicates that if there exists either a learning error

ε` or external disturbance d, the tracking error bound grows
exponentially with time, and thus (8) becomes no longer useful
for large t. In [1], we demonstrate how the computed bounds
of (6) (limt→∞ e−αt = 0) and (8) (limt→∞ eL f t = ∞) affect the
control performance in practice.

III. CONTRACTION THEORY-BASED ROBUST AND
OPTIMAL TRACKING CONTROL

Theorem 1 is subject to the assumption that we have a
contraction theory-based robust tracking control law u∗, which
satisfies (4) and (5) for a given (xd ,ud). This section thus
delineates one way to extend the method called ConVex
Optimization-based Steady-state Tracking Error Minimization
(CV-STEM) [12], [13], [15] to find a contraction metric M of
Theorem 1, which minimizes an upper bound of the steady-
state error of (6) via convex optimization.

In addition, we modify the CV-STEM in [12] to derive
a robust control input u∗ which also greedily minimizes
the deviation of u∗ from the target ud , using the computed
contraction metric M to construct a differential Lyapunov
function V = δy>Mδy. Note that u∗ is to be modeled by a
neural network which maps (x,o, t) to u∗ implicitly accounting
for (xd ,ud) as described in Theorem 1, although u∗ takes
(x,xd , t) as its inputs.

A. Problem Formulation of CV-STEM Tracking Control
For given (xd ,ud), we assume that u∗ of Theorem 1 can

be decomposed as u∗ = ud(xd ,o(t), t)+K(x,xd , t)(x−xd), the
generality of which is guaranteed by the following lemma.

Lemma 2: Consider a general tracking controller u de-
fined as u = k(x,xd , t) with k(xd ,xd , t) = ud(xd ,o(t), t), where
k : Rn × Rn × R≥0 7→ Rm. If k is piecewise continuously
differentiable, then ∃K : Rn × Rn × R≥0 7→ Rm×n s.t. u =
k(xd ,xd , t) = ud(xd ,o(t), t)+K(x,xd , t)(x− xd).

Proof: We have u = ud + (k(x,xd , t)− k(xd ,xd , t)) due
to k(xd ,xd , t) = ud(xd ,o(t), t). Since k(x,xd , t)− k(xd ,xd , t) =∫ 1

0 (dk(cx+(1− c)xd ,xd , t)/dc)dc, choosing K as
∫ 1

0 (∂k(cx+
(1− c)xd ,xd , t)/∂x)dc gives the desired relation.

Lemma 2 implies that designing optimal k of u∗ =
k(x,xd , t) reduces to designing optimal K(x,xd , t) of u∗ =
ud +K(x,xd , t)(x− xd). When (1) is controlled by the LAG-
ROS uL of Theorem 1 with such u∗, the virtual system of (1)
and (2) which has y = x and y = xd as its particular solutions
can be given by (3), where ζ is defined as follows:

ζ (y,x,xd , t) =ẋd +(A(x,xd , t)+B(x, t)K(x,xd , t))(y− xd) (9)

where A is the State-Dependent Coefficient (SDC) form of
the dynamical system (1) given by Lemma 2 of [15], which
verifies A(x,xd , t)(x − xd) = f (x, t) + B(x, t)ud − f (xd , t) −
B(xd , t)ud . Note that ζ indeed satisfies ζ (x, t) = f (x, t) +
B(x, t)u∗ and ζ (xd , t) = f (xd , t)+B(xd , t)ud for such A, to have
y = x and y = xd as the particular solutions to (3).

B. CV-STEM Contraction Metrics as Lyapunov Functions
The remaining task is to construct M so that it satisfies (4)

and (5). The CV-STEM approach suggests that we can find
such M via convex optimization to minimize an upper bound
of (6) as t → ∞ when α of (4) is fixed. Theorem 2 proposes
using the metric M designed by the CV-STEM for a Lyapunov
function, thereby augmenting u∗ with additional optimality to
greedily minimize ‖u∗−ud‖2 for ud in (2).

Theorem 2: Suppose that f and B are piecewise contin-
uously differentiable, and let B = B(x, t) and A = A(x,xd , t)
in (9) for notational simplicity. Consider a contraction metric
M(x,xd , t) =W (x,xd , t)−1 � 0 given by the following convex
optimization (CV-STEM) [12], [13], [15] to minimize an upper
bound on the steady-state tracking error of (6):

J∗CV = min
ν>0,χ∈R,W̄�0

b̄ε`+ d̄
α

χ s.t. (11) and (12) (10)

with the convex constraints (11) and (12) given as

− ˙̄W +2sym(AW̄ )−2νBR−1B> �−2αW̄ , ∀x,xd , t (11)
I � W̄ (x,xd , t)� χI, ∀x,xd , t (12)
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where α,ω,ω ∈ (0,∞), ν = 1/ω , χ = ω/ω , W̄ = νW , and
R = R(x,xd , t) � 0 is a given weight matrix on the control
input. Suppose also that u∗ of Theorem 1 is given by u∗ =
ud(xd ,o(t), t)+K∗(x,xd , t)e, where e= x−xd , and K∗ is given
by the following convex optimization (x,xd , t):

K∗ = arg min
K∈Rm×n

‖u−ud‖2 = arg min
K∈Rm×n

‖K(x,xd , t)e‖2 (13)

s.t. Ṁ+2sym(MA+MBK(x,xd , t))�−2αM. (14)

Then M satisfies (4) and (5) for ζ defined in (9), and thus (6)
holds, i.e., we have the exponential bound on the tracking error
‖x−xd‖ when the dynamics (1) is controlled by the LAG-ROS
control input uL of Theorem 1. Furthermore, the problem (13)
is always feasible.

Proof: Since the virtual dynamics of (3) with (9) is given
as δ ẏ = (∂ζ/∂y)δy = (A−BK)δy, substituting this into (4)
verifies that (4) and (14) are equivalent. For K̄ =−R−1B>M,
(14) can be rewritten as

ν
−1M(− ˙̄W +2sym(AW̄ )−νBR−1B>)M �−2αν

−1MW̄M.

Since this is clearly feasible as long as M satisfies the condition
(11), this implies that (13) is always feasible. Also, multiplying
(5) by W from both sides and then by ν gives (12). These facts
indicate that the conditions (4) and (5) are satisfied for M and
u∗ constructed by (10) and (13), respectively, and thus we have
the exponential bound (6) as a result of Theorem 1. Further-
more, the problem (10) indeed minimizes an upper bound of
(6) as t → ∞ due to the relation 0 ≤

√
ω/ω =

√
χ ≤ χ . We

remark that (10) is convex as the objective is affine in χ and
(11) and (12) are linear matrix inequalities in terms of ν , χ ,
and W̄ .

Remark 1: (10) and (13) are convex and thus can be solved
computationally efficiently [18, pp. 561]. For systems with a
known Lyapunov function, we could simply use it to get u∗

in Theorem 2 without solving (13), although optimality may
no longer be guaranteed in this case.

Remark 2: The contraction metric construction itself can
be performed using a neural network [13], [15], [19], [20],
leading to an analogous incremental stability and robustness
results to those of Theorem 1 [19], [21].

IV. CONCLUSION

In this work, we propose the LAG-ROS, a real-time imple-
mentable learning-based motion planner with formal stability
and robustness guarantees. It extensively utilizes contraction
theory to provide an explicit exponential bound on the distance
between the target and controlled trajectories, even under the
existence of the LAG-ROS modeling error and external distur-
bances. We remark that other types of disturbances can be in-
corporated in this framework using [15] for stochastic systems
and [19] for parametric uncertain systems. The journal version
of this paper with detailed mathematical proofs and simulation
results can be found in https://arxiv.org/abs/2102.12668 [1].
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