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Abstract— We integrate sampling-based planning techniques
with funnel-based feedback control to develop KDF, a new
framework for solving the kinodynamic motion-planning prob-
lem via funnel control. The considered systems evolve subject
to complex, nonlinear, and uncertain dynamics (aka differential
constraints). Firstly, we use a geometric planner to obtain a
high-level safe path in a user-defined extended free space.
Secondly, we develop a low-level funnel control algorithm that
guarantees safe tracking of the path by the system. Neither
the planner nor the control algorithm use information of the
underlying dynamics of the system, which makes the proposed
scheme easily distributable to a large variety of different sys-
tems and scenarios. Intuitively, the funnel control module is able
to implicitly accommodate the dynamics of the system, allowing
hence the deployment of purely geometrical motion planners.
Extensive computer simulations and experimental results with
a 6-DOF robotic arm validate the proposed approach.

I. INTRODUCTION

Motion planning of autonomous systems is one of the
most fundamental problems in robotics, with numerous ap-
plications such as exploration, autonomous driving, robotic
manipulation, autonomous warehouses, and multi-robot coor-
dination [1], [2]. It has been extensively studied in the related
literature; works have been continuously developed for the
last three decades, exploring plenty of variations, including
feedback control, discrete planning, uncertain environments,
and multi-agent systems. One important and active area of
research consists of kinodynamic motion planning, i.e., when
the planning algorithm takes into account the underlying
system dynamics, also known as differential constraints [1].

In this paper we develop KDF, an algorithmic framework
for the kinodynamic motion-planning problem by integrating
sampling-based algorithms with intelligent feedback control.
We consider systems that evolve subject to high-dimensional
dynamics, which are highly nonlinear and uncertain. Firstly,
we develop a funnel-based, feedback-control scheme that
achieves confinement of the system state around a given
trajectory within user-defined bounds, without using any
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knowledge of the system dynamics. Next, we use these
bounds to create a family of geometric sampling-based mo-
tion planners in an extended free space. A motion-planning
query is solved then by obtaining a safe geometric path in
this free space, and using the developed feedback-control
scheme to track it. The proposed framework guarantees that
the system will follow the derived path without colliding
with workspace obstacles. Loosely speaking, we augment
geometric motion planning algorithms with extended free-
space capabilities and intelligent feedback control to provide
a new solution to the kinodynamic motion-planning prob-
lem. The incorporation of the control scheme relieves the
sampling-based motion planner from the system dynamics
and their uncertainties.

II. PROBLEM FORMULATION

Consider a robotic system characterized by the config-
uration vector q1 ∈ T× ⊂ Rn, n ∈ N. Usual robotic
structures (e.g., robotic manipulators) might consist of trans-
lational and rotational joints, which we define here as qt =
[qt1, . . . , q

t
ntr

]> ∈ Rntr and qr = [qr1, . . . , q
r
nr

]> ∈ [0, 2π)nr ,
respectively, with ntr + nr = n, and hence T := Wtr ×
[0, 2π)nr , where Wtr is a closed subset of Rntr . Without
loss of generality, we assume that q1 = [(qt)>, (qr)>]>.

We consider kth-order systems, with k ≥ 2, of the form

q̇i = fi(q̄i, t) + gi(q̄i, t)qi+1, ∀i ∈ {1, . . . , k − 1} (1a)
q̇k = fk(q̄k, t) + gk(q̄k, t)u, (1b)

where q̄i := [q>1 , . . . , q
>
i ]> ∈ T× Rn(i−1), ∀i ∈ {1, . . . , k},

and u ∈ Rn is the control input of the system; q2, . . . , qk
represent high-order variables of the system (e.g., generalized
velocities, accelerations, etc). Note that the kth-order model
(1) generalizes the simpler 2nd-order Lagrangian dynamics,
which is commonly used in the related literature. The vector
fields fi, gi, which represent various terms in robotic systems
(inertia, Coriolis, friction, gravity, centrifugal) are considered
to be completely unknown to the designer/planner, ∀i ∈
{1, . . . , k}.

We consider that the robot operates in a workspace W ⊂
R3 filled with obstacles occupying a closed set O ⊂ R3.
We denote the set of points that consist the volume of the
robot at configuration q1 as A(q1) ⊂ R3. The collision-
free space is defined as the open set Afree := {q1 ∈ T :
A(q1)∩O = ∅}. Our goal is to achieve safe navigation of the
robot to a predefined goal region Qg ⊂ Afree from an initial
configuration q1(0) ∈ Afree via a path qp : [0, σ]→ Afree
satisfying qp(0) = q1(0) and qp(σ) ∈ Qg , for some positive
σ.



The problem we consider is the following:
Problem 1: Given q(0)) ∈ Afree and Qg ⊂ Afree, respec-

tively, design a control trajectory u : [0, tf ]→ Rn, for some
finite tf > 0, such that the solution q∗(t) of (1) satisfies
q∗(t) ∈ Afree, ∀t ∈ [0, tf ], and q∗(tf ) ∈ Qg .

III. MAIN RESULTS

We present here the proposed solution for Problem 1.
Our methodology follows a two-layer approach, consisting
of a robust trajectory-tracking control design and a higher-
level sampling-based motion planner. Firstly, we design an
adaptive control protocol that compensates for the uncertain
dynamical parameters of the robot and forces the system to
evolve in a funnel around a desired trajectory, whose size can
be a priori chosen by the user/designer, and is completely
independent from the system dynamics (1). Secondly, we
develop a geometric sampling-based motion planner that uses
this funnel to find a collision free trajectory from the initial to
the goal configuration. Intuitively, the robust control design
helps the motion planner procedure, which does not have to
take into account the complete dynamics (1).

A. Control Design
Let qd := [(qtd)>, (qrd)>]> :=

[qtd1 , . . . , q
t
dntr

, qrd1 , . . . , q
r
dnr

]> : [t0, t0 + tf ] → T be
a smooth (at least k-times continuously differentiable)
reference trajectory, with qtd ∈ Rntr and qrd ∈ [0, 2π)nr

being its translational and rotational parts, respectively.
Such a trajectory will be the output of the sampling-based
motion-planning algorithm that will be developed in the
next section.

We wish to design the control input u of (1) such that q(t)
converges to qd(t), despite the unknown terms fi, gi. We start
by defining the appropriate error metric between q1 and qd,
which represents their distance. Regarding the translational
part, we define the standard Euclidean error et := qt−qtd. For
the rotation part, however, the the same error er := qr − qrd
does not represent the minimum distance metric, since qr

evolves on the nr-dimensional sphere. Hence, we use the
chordal metric dC(x) := 1 − cos(x) ∈ [0, 2],∀x ∈ [0, 2π),
extended for vector arguments x = [x1, . . . , xn] ∈ [0, 2π)n

to d̄C(x) :=
∑
`∈{1,...,n} dC(xj), and introduce

ηr` := dC(er`) = 1− cos(er`),

where er` := qr`−qrd` is the `th element of er, ` ∈ {1, . . . , nr}.
The funnel is defined by the functions ρtj : [t0, t0 + tf ]→

[ρt
j
, ρ̄tj ], ρ

r
` : [t0, t0 + T ]→ [ρr

`
, ρ̄r`] with

ρtj(t0) = ρ̄tj , ρ
r
`(t0) = ρ̄r` (2a)

ρtj(t0 + tf ) = ρt
j
, ρr`(t0 + tf ) = ρr

`
(2b)

0 < ρt
j
≤ ρ̄tj , 0 < ρr

`
≤ ρ̄r` < 2 (2c)

|etj(t0)| < ρ̄tj , η
r
`(t0) < ρ̄r` (2d)

∀j ∈ {1, . . . , ntr}, ` ∈ {1, . . . , nr}. Our aim is to design a
control protocol such that

|etj(t)| < ρtj(t), ∀j ∈ {1 . . . , ntr}, (3a)

ηr`(t) < ρr`(t), ∀` ∈ {1 . . . , nr}, (3b)

∀t ∈ [t0, t0+tf ]. The funnel functions can be defined a priori
by a user, specifying the performance of the system in terms
of overshoot and steady-state value of the errors etj , e

r
`.

Let us define first the normalized and transformed signals

ξtj :=
etj
ρtj
, ξr` :=

ηr`
ρr`
, (4a)

εtj := ln

(
1 + ξtj
1− ξtj

)
, εr` := ln

(
1

1− ξr`

)
, (4b)

rtj :=
∂εtj
∂ξtj

rr` :=
∂εr`
∂ξr`

, (4c)

for j ∈ {1 . . . , ntr}, ` ∈ {1 . . . , nr}, and set α1 :=
[(αt)>, (αr)>]>, with

αt := −Ktr̃t(ρ̃t)−1εt (5a)

αr := −Krs̃r(ρ̃r)−1rr, (5b)

where Kt := diag{[ktj ]j∈{1,...,ntr}} ∈ Rntr×ntr , Kr :=
diag{[kr`]`∈{1,...,nr}} ∈ Rnr×nr are diagonal positive
definite gain matrices, r̃t := diag{[rtj ]j∈{1,...,ntr}},
rr := [rr1, . . . , r

r
nr

], ρ̃t := diag{[ρtj ]j∈{1,...,ntr}}, ρ̃r :=
diag{[ρr`]`∈{1,...,nr}}, εt := [εt1, . . . , ε

t
ntr

]>, and s̃r :=
diag{[sin(er`)]`∈{1,...,nr}}.

The rest of the algorithm proceeds recursively: for i ∈
{2, . . . , k}, we define the error ei = [ei1 , . . . , ein ]>, with

ei := qi − αi−1 ∈ Rn, (6)

where αi−1 will be given subsequently in (8). We design
funnel functions ρim : [t0, t0 + tf ]→ [ρ

im
, ρ̄im ], ρ

im
≤ ρ̄im ,

such that ρim(t0) = ρ̄im > |eim(t0)|1, ∀m ∈ {1, . . . , n},
and define

ξi := ρ−1
i ei, (7a)

εi :=
[
ln
(

1+ξi1
1−ξi1

)
, . . . , ln

(
1+ξin
1−ξin

)]>
(7b)

ri := diag

{[
∂εim
∂ξim

]
m∈{1,...,n}

}
, (7c)

where ρi := diag{[ρim ]i∈{1,...,n}} ∈ Rn×n. Finally, we
design the intermediate reference signals as

αi := −Kiρ
−1
i riεi,∀i ∈ {2, . . . , k − 1}, (8)

and the control law

u = −Kkρ
−1
k rkεk, (9)

where Ki ∈ Rn×n, i ∈ 2, . . . , k, are positive definite gain
matrices. We can guarantee the correctness of the proposed
protocol under mild assumptions on the positive definiteness
of gi, i ∈ {1, . . . , k} [3].

1Note that eim (t0) can be measured at the time instant t0 and the
functions ρim can be designed accordingly.



B. Motion Planner

We introduce now the framework of KinoDynamic motion
planning via Funnel control, or KDF motion-planning frame-
work; The framework uses the control design of Section
III-A to augment geometric sampling-based motion-planning
algorithms and solve the kinodynamic motion-planning prob-
lem.

Before presenting the framework, we define the extended-
free space, which will be used to integrate the results from
the feedback control of the previous subsection. In order to
do that, we define first the open polyhedron as

P(z, ρ̄) := {y ∈ T :|ytj − ztj | < ρ̄tj ,

1− cos(yr` − zr`) < ρ̄r` ,

∀j ∈ {1, . . . , ntr}, ` ∈ {1, . . . , nr}} (10)

where y, z ∈ T consist of translational and rotational terms
(similarly to q1), and ρ̄ := [ρ̄t1, . . . , ρ̄

t
ntr
, ρ̄r1, . . . , ρ̄

r
nr

]> ∈
Rntr+nr is the vector of maximum funnel values. We define
now the ρ̄-extended free space

Āfree(ρ̄) := {z ∈ T : Ā(z, ρ̄) ∩ O = ∅}, (11)

where Ā(z, ρ̄) :=
⋃

y∈P(z,ρ̄)A(y). In addition, define the
distance metric for vectors x = [(xt)>, (xr)>]>, y =
[(yt)>, (yr)>]> ∈ T as dT : T2 → R≥0, with

dT(x, y) = ‖xt − yr‖2 + d̄C(xr − yr), (12)

which captures accurately the proximity of Āfree(ρ̄) ⊂ T.
The intuition behind the KDF framework is as follows.

The control scheme of the previous subsection guarantees
that the robot can track a trajectory within the prescribed
funnel bounds. In other words, given a desired trajectory
signal qd : [t0, t0 + tf ] → T, the control algorithm (4)-(9)
guarantees that q1(t) ∈ P(qd(t), ρ̄), for all t ∈ [t0, t0 + tf ].
Therefore, by the construction of Āfree(ρ̄), if qd(t) belongs
to Āfree(ρ̄), q1(t) belongs to Afree. The proposed sampling-
based framework aims at finding a path in Āfree(ρ̄); this path
will be then endowed with time constraints in order to form
the trajectory qd : [t0, t0 + tf ] → Āfree(ρ̄), which will then
safely tracked by the system using the designed controller.

Common geometric sampling-based motion-planning al-
gorithms follow a standard iterative procedure that builds a
discrete network G = (V, E), (tree, roadmap) of points in the
free space connecting the initial configuration to the goal;
V and E denote the nodes (points) and edges, respectively,
of the network. The most common functions are Sample(),
and ObstacleFree(y, z), sampling a random point from a
distribution in Afree, and checking whether the path from
y to z belongs to the free space Afree, respectively.

As stated before, we aim to find a path in the extended free
space Āfree(ρ̄). To this end, we need to sample points and
perform collision checking in Āfree(ρ̄). Therefore, we define
the functions SampleExt(ρ̄) and ObstacleFreeExt(y, z, ρ̄);
SampleExt(ρ̄) samples a point from a uniform distribution
in the extended free space Āfree(ρ̄); ObstacleFreeExt(y, z, ρ̄)
checks whether the path XLine : [0, σ]→ T, for some positive

σ, from y to z is collision free with respect to the extended
free space, i.e., check whether y′ ∈ Āfree(ρ̄), ∀y′ ∈ XLine.

The new functions SampleExt(·) and ObstacleFreeExt(·)
can be used in any geometric sampling-based motion plan-
ning algorithm, giving thus rise to a new family of al-
gorithms, which produce a safe path in an extended free
space Āfree(ρ̄). This path is then tracked by the system
using the control algorithm of Section III-A. Note, however,
that the control algorithm guarantees tracking of a time-
varying smooth (at least k-times continuously differentiable)
trajectory qd(t), whereas the output of the respective motion
planning algorithm is a path, i.e., a sequence of points in
T. Therefore, we smoothen this path and endow it with
a time behavior, producing hence a time trajectory (see
[4]). The combination of the aforementioned steps, namely
the family of geometric sampling-based motion planning
algorithms in Āfree(ρ̄), the time endowment, and the funnel-
control algorithm of Section III-A, constitute the framework
of KinoDynamic motion planning via Funnel control, or
KDF motion-planning framework. This framework solves the
kinodynamic motion-planning problem, without resorting to
sampling of control inputs or employment of the system dy-
namics (either in the motion-planning or the control module).

An example of a KDF motion-planning algorithm is KDF-
RRT, presented in Algorithm 1.

Algorithm 1 KDF-RRT

Input: ρ̄, Afree, Qg , q1(0)
Output: Tree G in Āfree(ρ̄)

1: procedure TREE
2: V ← {q1(0)}; E ← ∅; ReachGoal← False;
3: while not ReachGoal do
4: G ← (V, E);
5: qrand ← SampleExt(ρ̄);
6: qnearest ← Nearest(G, qrand);
7: qnew ← Steer(qnearest, qrand);
8: if ObstacleFreeExt(qnearest, qnew, ρ̄) then
9: V ← V ∪ {qnew};E ← E ∪ {(qnearest, qnew)};

10: for q′ ∈ V do
11: if ObstacleFreeExt(q′, Qg, ρ̄) then
12: V ← V ∪ {Qg}; E ← E ∪ {(q′, Qg)};
13: ReachGoal← True;

IV. EXPERIMENTS

This section is devoted to the experimental validation of
the proposed framework using a 6DOF manipulator from
HEBI-Robotics subject to 2nd-order dynamics, which con-
sists of 6 rotational joints (see Fig. 1) operating in [−π, π],
resulting in q1 = [qt1, . . . , q

t
6]>.

We consider that the robot has to perform a pick-and-place
task, where it has to pick an object from region T1 and deliver
it in region T2 (see Fig. 1). We use the KDF-RRT algorithm,
with ρ̄ = [0.15, 0.1, 0.1, 0.2, 0.2, 0.2] rad, to generate two
paths: from the initial configuration to a point close to T1

(to avoid collision with the object), and from T1 to T2.



Fig. 1: The initial configuration of the HEBI robot in an
obstacle-cluttered environment.

Regarding the collision checking in Āfree(ρ̄), we check 10
samples around each point of the resulting path for collision.
We next fit smooth trajectories for the two paths qr,1d (t),
qr,2d (t), with duration of tf1 = 7 and tf2 = 11 seconds,
respectively. For grasping the object, we use a simple linear
interpolation to create an additional time-varying trajectory
segment to T1 with duration of 3 seconds.

For the execution of the control algorithm, we choose
constant funnel functions ρt,i = [ρt,i1 , . . . , ρ

t,i
6 ]> = ρ̄ =

[0.15, 0.1, 0.1, 0.2, 0.2, 0.2] rad, for the two paths i ∈ {1, 2}.
Moreover, we choose ρ2j = 15 for all j ∈ {1, . . . , 6},
and the control gains as Kt = diag(1.25, 1.5, 1, 2, 1, 1),
K2 = diag(250, 200, 150, 50, 20, 10).

The results of the experiment are depicted in Fig. 2, which
depicts the normalized signals ξt(t) = [ξt1, . . . , ξ

t
6]> and

ξ2(t) = [ξ21
, . . . , ξ26

]> (top and bottom, respectively) for
t ∈ [0, 21] seconds. It can be observed that for the entire
motion, it holds that ξtj ∈ (−1, 1), ξ2j (t) ∈ (−1, 1), for
all j ∈ {1, . . . , 6}, which implies that −ρtj < etj(t) =
q1(t)−qd(t) < ρtj , −ρ2j

< e2(t) = q2j
(t)−α1j

(t) < ρtj , for
all j ∈ {1, . . . , 6} and t ∈ [0, 21] seconds, with α1 as in (5).
Therefore, we conclude that the robot tracks the path output
by the KDF-RRT algorithm within the prescribed funnel,
avoiding thus collisions.

In order to further evaluate the proposed control algorithm,
we compared our results with a standard well-tuned PID
controller as well as the parametric adaptive control scheme
(PAC) of our previous work [4]. The signals ξt for these
two control schemes are depicted in Fig. 3. Note that the
controllers fail to retain the normalized errors ξtj(t) in the
interval (−1, 1). Although in the particular instance this did
not lead to collisions, it jeopardizes the system motion, since
it does not comply with the bounds set in the KDF-RRT
algorithm.

V. DISCUSSION

By using funnel control, we open the way of using
geometric sampling-based motion planners for solving the
kinodynamic motion-planning problem for high-dimensional

Fig. 2: The evolution of the normalized errors ξtj (top) and
ξ2j

(t), for j ∈ {1, . . . , 6}, of the hardware experiment.
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Fig. 3: The evolution of the normalized errors ξtj (top) and
ξ2j (t), for j ∈ {1, . . . , 6}, of the hardware experiment,
when using a PID controller (top), and the adaptive control
algorithm from [4].

robots with uncertain dynamics. Limitations that need to
be addressed in future work include taking into account
explicit input constraints and considering underactuated or
nonholonomic dynamics.
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