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Abstract— In this extended abstract, we present our latest
research on learning dynamics models for agile quadrotor
flight. Access to accurate dynamics models allows to improve
performance of model-based controllers, perform controller
tuning tasks entirely in simulation, and facilitates simulation-
to-reality transfer of learning-based control policies.

I. INTRODUCTION

In recent years, research on fast navigation of autonomous
quadrotors has made tremendous progress, continually push-
ing the vehicles to more aggressive maneuvers (Figure 1).
To further advance the field, several competitions have been
organized, such as the autonomous drone race series at
the recent IROS and NeurIPS conferences [1], [2] and the
AlphaPilot challenge [3]. In the near future, estimation and
control algorithms will reach the level of maturity necessary
to push autonomous quadrotors to the bounds of what is
physically possible. This presents the need for quadrotor
models that can predict the behaviour of the platform even
during highly aggressive maneuvers. Accurately modeling
quadrotors flying at their physical limits is extremely chal-
lenging and requires to capture complex effects due to aero-
dynamic forces, motor dynamics, and vibrations. Especially
aerodynamic forces pose a challenge, as they depend on
hidden state variables like airflow, which cannot be easily
measured. Furthermore, the individual downwash induced by
the rotors interacts with both the frame and the blades de-
pending on the current state of the platform. The repeatability
of tracking errors observed in prior work [4]–[6] and in this
work when performing aggressive maneuvers suggests that
the difficulty of learning quadrotor dynamics is not caused
by stochasticity in the dynamics, but rather by unobserved
state variables such as airflow.

Traditional approaches to quadrotor modeling limit the
captured effects to simple linear drag approximations and
quadratic thrust curves [7]–[9]. Such approximations are
computationally efficient and describe the platform well in
low-speed regimes, but exhibit increasing bias at higher
velocities as they neglect the influence of the inflow velocity
on the generated thrust. More elaborate models based on
blade-element-momentum (BEM) theory manage to accu-
rately model single rotors at high wind velocities, but they
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Fig. 1: We developed a quadrotor modeling method that can
accurately predict aerodynamic forces and torques acting on the
platform. The model is identified from a rich set of maneuvers
covering the full performance envelope of the platform.

do not account for the aerodynamic interactions between
rotors and the frame. Parametric gray-box models [10] aim
to overcome these limitations by describing the forces and
torques as a linear combination of library functions. While
these models can perform well, their performance hinges
on the appropriate choice of basis functions, which require
human expert knowledge to design. Recent research has
investigated computational fluid dynamics [11] to model the
aerodynamic effects at play during different flight conditions.
While being very accurate, such approaches are computation-
ally expensive and need hours of processing on a compute
cluster, rendering them impractical for experiments spanning
more than a few seconds.

We have investigated the usage of data-driven methods
to model the residual dynamics of the quadrotor platform
and combining such learned model with a nominal model
based on first principles. Our results indicate that such
combination results in very accurate dynamics models that
are also efficient to compute, while requiring less training
data than approaches that learn the entire model from data.

II. MODEL LEARNING FOR CONTROL

Incorporating a learned model into a control pipeline
enforces tight constraints on the computational complexity
of the model and its inference time. We have developed
a lightweight approach that combines Gaussian Processes
(GPs) with a nominal quadrotor model that does not account
for aerodynamic drag effects [12]. As the nominal model
already captures the characteristics of the platform well in
the slow-flight regime, the GPs mainly need to model aerody-
namic effects that are encountered during fast and aggressive
trajectories. This allows to learn an accurate dynamics model
from a small number of inducing data points.

As the model is lightweight and efficient to compute, we
can integrate it directly into a model predictive controller,
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Fig. 2: Our quadrotor platform reaches its physical limits at a pitch
angle of 80 degrees while performing a lemniscate trajectory in our
experiments. Throughout the trajectory, the platform reaches speeds
of up to 14m s−1 and accelerations beyond 4g.

which runs at frequencies greater than 100Hz. We show that
the augmented MPC improves trajectory tracking by up to
70% with respect to its nominal counterpart. We verify our
method by extensive comparison to a state-of-the-art linear
drag model in synthetic and real-world experiments at speeds
of up to 14m s−1 and accelerations beyond 4g.

III. LEARNING A SIMULATOR

While Gaussian Processes provide an efficient way to
augment the dynamics model with real-world flight data,
they scale poorly to large amounts of data which imposes
a constraint on their predictive capability. Furthermore, the
approach presented in [12] does not model residual torques,
effectively neglecting moments caused by rotor-to-rotor in-
teractions.

To maximize the predictive power of the quadrotor dy-
namics model, we developed a quadrotor dynamics model
that can accurately capture complex aerodynamic effects by
augmenting a state-of-the-art rotor model based on blade-
element momentum (BEM) theory with learned residual
force and torque terms represented by a deep neural network.
The resulting hybrid model (BEM+NN) benefits from the
expressive power of deep neural networks and the general-
izability of first-principles modeling. The latter reduces the
need for extreme amounts of training data. The model is
identified using data collected from a large set of maneuvers
performed on a real quadrotor platform. Leveraging one
of the biggest optical tracking volumes in the world, the
platform’s state as well as the motor speeds are recorded
during flight.

The proposed model is compared against state-of-the-art
modeling approaches [13] (PolyFit) as well as BEM without
augmentation on unseen test maneuvers. The comparison is
done in terms of both evaluation of predicted aerodynamic
forces and torques and closed-loop integration of the model
in a simulator, each evaluated against real-world reference
data. In both categories, a significant performance increase
is observed.

This work proposes a novel method to model quadrotors
by combining modeling based on first principles with a
learning-based residual term represented by a neural network.
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Fig. 3: The plots show a highly aggressive maneuver (from the test
dataset) where only models with neural net augmentation predict
the forces and torques well.

The proposed method is able to accurately model quadrotors
even throughout aggressive trajectories pushing the platform
to its limits. This hybrid model outperforms its compositional
modules with up to 50% error reduction, including baseline
methods that utilize only first-principles modeling, as well
as purely learning-based methods. The method shows strong
generalization beyond the training set used to identify the
model and predicts accurate forces and torques where other
methods break down. Controlled experiments indicate that
the fusion of learned dynamics with first-principles is a
powerful combination. Applied to simulations, our approach
enables unprecedented accuracy, reducing potsitional RMSE
from ∼0.8m for state-of-the-art approaches, down to below
0.3m. This could tremendously speed up development and
testing of advanced control and navigation strategies for
quadrotors, without the need of the tedious and crash-prone
trial-and-error strategy on real systems.

IV. FUTURE WORK

Our recent works show that combining modeling based
on first principles with learning-based residual terms is able
to accurately model quadrotors even throughout aggressive
trajectories that push the platform to its limits. Our methods
show strong generalization beyond the training set used to
identify the model parameters and predict accurate forces
and torques where other methods break down. Access to
such high-fidelity models could tremendously speed up de-
velopment and testing of advanced control and navigation
strategies for quadrotors, such as using policy search methods
based on deep reinforcement learning.
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