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Abstract— In this work we address the safe adaptive control
problem for autonomous vehicles in the highway on-ramp
merging scenario. We argue that by developing a Control
Barrier Function (CBF)-based method, autonomous vehicles
are able to perform adaptive interactions with human drivers
with safety guarantees under uncertainty. We propose a novel
extension of traditional CBF to a probabilistic setting for
stochastic system dynamics with provable chance-constrained
safety and provide a theoretical analysis to discuss the solution
feasibility guarantee and design factors reflecting different
vehicle behaviors. This allows for adaptation to different driving
strategies with a formally provable feasibility guarantee for
the ego vehicle’s safe controller. The results demonstrate the
enhanced safety and adaptability of our proposed approach.

I. INTRODUCTION

Since self-driving cars can not replace all the human
drivers immediately, they will have to share roads with hu-
man drivers for a long time. For autonomous vehicles (AV),
how to incorporate uncertainty from a complex scenario and
achieve safety and efficiency at the same time has been a very
popular research topic. One of the most typical scenarios
is the highway on-ramp merging scenario where intensive
interactions exist between human drivers and AVs. Collisions
will happen if they can not be planned and controlled safely.

Automated Cruise Control (ACC)-like distance control
methods has been applied broadly in the car-making industry,
by forcing the vehicle to brake when distance is less than
the specified minimum safety distance, while maintaining
the minimum deviation from the user-defined driving speed.
However, vehicle control with ACC in the real world can be
difficult due to potential conflicts of multiple objectives. The
NHTSA categorizes these methods as convenience features
rather than safety features [1].

The goal of this work is to enable the AV to merge with
human-driven cars safely and efficiently in the highway on-
ramp merging scenario. Specifically, we present an improved
Control Barrier Function (CBF)-based approach to allow AVs
to perform safe merging under uncertainty with formally
provable safety guarantee. Moreover, by leveraging the bi-
level optimization structure, we provide a solution feasibility
guarantee in runtime which sets us apart from the traditional
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CBF-based methods. Different design factors for adaptive
behavior generation are also discussed.

II. RELATED WORK

In the area of behavior planning and control of au-
tonomous driving, learning-based methods are widely used.
Dong et al. [2] proposed a Probabilistic Graphical Model-
based method to help the ego vehicle decide whether to
yield or not in ramp merging, followed by an ACC controller.
Nishitani et al. [3] introduced a vehicle controller using deep
reinforcement learning to improve the merging efficiency
while tracking the expected vehicle speed. However, these
learning-based methods cannot provide a provably correct
safety guarantee which is in critical need.

The CBF-based method was initially proposed by Wieland
and Allower [4] to describe an admissible control space that
renders forward invariance of a safe set. Notomista et al. [5]
proposed a CBF-based method specifically for the two-car
racing scenario. Due to the special property of the scenario,
driving conservativeness is minimized in order to attain the
strongest racing performance, which makes the method not
applicable to everyday traffic scenarios.

Quantitative analysis on solution feasibility conditions is
another missing gap in existing CBF works. [6] mentions
that the solution feasibility can be guaranteed by assuming
immediate stop for all robots to prevent collision in the
worst case. However, a more principled scheme with explicit
theoretical grounding is desirable to automatically decide
whether the vehicle needs to apply full braking before it
is too late.

To address model uncertainty, [5] and [7] proposed to
employ the CBF approach with noisy system dynamics.
However, their work assumed that the uncertainty is bounded,
which limits the probability distribution and is not suitable
for a general consistent solution feasibility guarantee.

III. BACKGROUND OF TRADITIONAL CBF

A Control Barrier Functions (CBF) [8] is used to define an
admissible control space for safety assurance of dynamical
systems. One of its important properties is its forward-
invariance guarantee of a desired safety set. Consider the
nonlinear system in control affine form: ẋ = f(x) + g(x)u,
where x ∈ X ⊂ Rn and u ∈ U ⊂ Rm are the system
state and control input with f and g assumed to be locally
Lipschitz continuous. A desired safety set x ∈ H can be
denoted by the following safety function:

H = {x ∈ Rn : h(x) ≥ 0} (1)



Thus the control barrier function for the system to remain
in the safety set can be defined as follows [8]:

Definition 1. (Control Barrier Function) Given a dynamical
system defined above and the set H defined in (1) with a
continuously differentiable function h : Rn → R, then h is
a control barrier function (CBF) if there exists an extended
class K∞ function for all x ∈ X such that

sup
u∈U

{Lfh(x) + Lgh(x)u} ≥ −κ
(
h(x)

)
(2)

where ḣ(x, u) = Lfh(x) + Lgh(x)u with Lfh, Lgh as the
Lie derivatives of h along the vector fields f and g. Similar
to [6], in this paper we use the particular choice of extended
class K∞ function with the form as κ(h(x)) = αh(x)
where α ≥ 0 is a CBF design parameter controlling system
behaviors near the boundary of h(x) = 0. Hence, the
admissible control space in Eq. 2 can be redefined as

B(x) = {u ∈ U : ḣ(x, u) + αh(x) ≥ 0 } (3)

It is proved in [8] that any controller u ∈ B(x) will render
the safe state set H forward invariant. In this paper, we
consider the particular choice of pairwise vehicle safety
function hsem(x), safety set Hs, and admissible safe control
space Bs(x) as follows.

Hs = {x ∈ X : hsem(x) = ||xe − xm||2 −R2
safe ≥ 0, ∀m}

Bs(x) = {u ∈ U : ḣsem(x, u) + αhsem(x) ≥ 0, ∀m}
(4)

where xe, xm are the states of ego vehicle e and each
merging vehicle m with Rsafe ∈ R as the minimum allowed
safety distance between pairwise vehicles.

IV. METHOD

A. Problem Formulation

In this section, the problem formulation in the ramp
merging scenario is introduced. The goal is to control the ego
vehicle (host vehicle) on the main road to merge safely with
the human-driven vehicles (merge cars) on the ramp with
motion uncertainty. The system dynamics of a vehicle can be
described by double integrators as follows since acceleration
plays a key role in the safety considerations.

Ẋ =

[
ẋ
v̇

]
=

[
02×2 I2×2

02×2 02×2

] [
x
v

]
+

[
02×2 I2×2

I2×2 02×2

] [
u
ε

]
(5)

where x ∈ X ⊂ R2, v ∈ R2 are the position and linear
velocity of each car respectively and u ∈ R2 represents the
acceleration control input. ε ∼ N (ε̂,Σ) is a random Gaussian
variable with known mean ε̂ ∈ R2 and variance Σ ∈ R2×2,
representing the uncertainty in each vehicle’s motion. We
assume the human-driven merging vehicle’s velocity vm and
the motion uncertainty distribution of εm are known to the
ego vehicle per time step with um = 0.

While performing safe merging with human vehicles, the
ego vehicle is expected to maintain task efficiency, passing
the merging point as fast as possible. Therefore, the objective

function can be formulated as a quadratic programming
problem for the ego vehicle with the control input ue.

min
ue∈Ue

||ue − ū||2

s.t Umin ≤ ue ≤ Umax

Pr
(
ḣsem(x, u) + αhsem(x) ≥ 0

)
≥ η, ∀m

(6)

where ū is the nominal expected acceleration for the ego
vehicle to follow, and Umax and Umin are the ego vehicle’s
maximum and minimum allowed acceleration. Rs is the
minimum allowed distance between two vehicles to avoid
collision for safety. We consider the chance-constrained
optimization problem to accommodate uncertainty with η ∈
(0, 1) as the desired confidence of probabilistic safety. Pr(·)
denotes the probability of a condition to be true. We employ
the chance constraints over vehicle controller ue to ensure
the resulting lower-bounded probability of vehicles being
collision-free. Most of prior CBF works assume a fixed
parameter α, however, a fixed α could make Eq. 6 not
solvable under certain circumstances [6]. One of the main
contributions of our work is formulating the original problem
Eq. 6 as the following bi-level optimization process with two
layers as Eq. 7: one for optimization over ue, and the other
one for optimization over α for feasibility guarantee.

min
ue∈Ue,α∈A

||ue − ū||2

s.t Umin ≤ ue ≤ Umax

Pr
(
ḣsem(x, u) + αhsem(x) ≥ 0

)
≥ η, ∀m

α = arg min
α∈A

{||α− ᾱ||2}

(7)

where A is the feasible set for α that will be proved to
ensure solution feasibility of ue. ᾱ is a nominal value by user
to specify the desired conservativeness of the safe behavior.
The feasible set A changes over time and to ensure solution
feasibility of ue, the goal is to ensure the set A is consistently
non-empty so that we can always find an α that causes
a nonempty set of ue (if it exists) to satisfy the safety
constraint.

B. Active and Feasible Condition of CBF

This section will first present a novel approach for CBF
with probabilistic safety consideration under uncertainty and
discuss the feasibility analysis with the CBF constraints.

Theorem 2. Given a stochastic dynamical system in Eq. 5
and a confidence level η ∈ (0, 1), the following admissible
control space Bsη(x) ensures a chance-constrained safety
condition in Eq. 7 for the ego vehicle with each merging
car m.

Bsη(x) = {ue ∈ Ue : Aemue ≥ bem, ∀m}
Aem = −2∆xTem∆t, bem =2∆xTem(∆vem + ∆ε̂em) + αhsem(x)

− Φ−1(η)
√

∆xTem∆Σem∆xem
(8)

where ∆xem = xe − xm,∆vem = ve − vm,∆εem =
εe − εm ∼ N (∆ε̂em,∆Σem) for ego vehicle e and each



Fig. 1: Illustration of CBF solution feasibility. The red dashed
lines stand for the value of K1 and K2 in two cases. Blue intervals
represent the reducing solution set while α keep decreasing. Case
1: Aem ≥ 0. We have ue ≤ K1 = A−1

embem, which provides an
upper bound for ue. While α keeps decreasing, CBF is activated
when K1 overlaps with Umax, and infeasbility is about to happen
when K1 overlaps with Umin. Case 2: Aem < 0. We have ue ≥
K2 = A−1

embem. While α keeps decreasing, we observe that CBF
is activated at the overlapping point with Umin, and infeasibility is
about to happen at the overlapping point with Umax.

merging vehicle m. Φ−1(·) is the inverse cumulative distri-
bution function (CDF) of the standard zero-mean Gaussian
distribution with unit variance. Proof can be found in [9].

Next, we will discuss the solution feasibility conditions
of the formulated problem in Eq. 7. In particular, we will
present how to ensure non-emptiness of α set A for non-
emptiness of set ue ∈ Bsη(x) that preserves the forward
invariant safety. Given Eq. 8, the set A feasibility analysis
is decomposed into two situations based on the positiveness
of Aem. The active and feasible conditions of CBF depend
on the overlap set between the CBF solution set and the
bounded control constraints as shown in Fig. 1. To simplify
the discussion, here we assume ue = Rθae ∈ R2 is
determined by ego vehicle’s linear acceleration ae ∈ R along
the ramp and the rotation matrix Rθ ∈ SO(2) by the road
geometry. Thus we reformulate Eq. 8 by Aem(Rθae) ≤ bem
and redefine Aem = AemRθ ∈ R, ue = ae ∈ R.

In conclusion, the boundary conditions of the CBF are:

Aem ≥ 0 : αmfeasible = MmUmin +Nm, αactive = MmUmax +Nm

Aem < 0 : αmfeasible = MmUmax +Nm, αactive = MmUmin +Nm
(9)

Mm =
Aem

hsem
, Nm =

Tm

hsem
, Tm = −2∆xTem(∆vem + ∆ε̂em)

+Φ−1(η)
√

∆xTem∆Σem∆xem

(10)

C. Consistent Solution Feasibility Guarantee

In the previous section, the relationship between α and
the solution feasibility was analyzed, and explicit feasible
conditions on α were given. Here, a Safe Adaptive Algorithm
(Algorithm 1) is introduced for guaranteed solution feasibil-
ity. For time steps 1 to N, at each time step t, ute is calculated
through the first-layer optimization. Then given states of both
vehicles, αt+1

fea is calculated to ensure the feasible solution set
Bsη(x) is non-empty at t+1. The second-layer optimization is
performed and α is updated at each iteration. The advantage
of this algorithm, compared to fixing the α value, is that it
provides a dynamic solution feasibility guarantee at run time.

Remark 1. The problem can still be infeasible with our
proposed method if the initial conditions make it impossible
to ensure safety, e.g. the ego vehicle is driving too fast, and
it’s already too late to avoid collision, and no matter what

Fig. 2: Validity test of the proposed method. The black dashed
line stands for the minimum allowed safety distance Rsafe = 8m.
The confidence level η is set to be 99%. The two different kinds
of curve shapes correspond to two merging results: asymptotically
approaching Rsafe indicates merging after the merging vehicle
and increasing Euclidean distance indicates merging in front of the
merging vehicle.

α we choose, Eq. 3 can never be satisfied. However, the
proposed method does guarantee solution feasibility as long
as such a solution exists.

Algorithm 1 Safe Adaptive Merging Algorithm
input: ∆xem,∆vem,∆t, Rsafe, am, ᾱ
output: α, ue

for t = 1 : N do
compute Atem, b

t
em

ute = arg minue
||ute − ū||2

compute At+1
em ,Mt+1

em , Nt+1
em via forward kinematics

if At+1 ≥ 0 then
αt+1
fea = Mt+1

em Umin +Nt+1
em

else
αt+1
fea = Mt+1

em Umax +Nt+1
em

end if
αt+1 = arg minα ||α−max(ᾱ, αt+1

fea)||2, ∀m
end for

V. EXPERIMENT & DISCUSSION

Validity Test: To prove that the proposed method is valid,
we conduct experiments against one merging vehicle, with
randomly generated ego vehicle initial conditions, including
position and velocity and desired driving strategy α. The
results are shown in Fig. 2. It is observed that all 400 trials
keep the minimum distance as required, and the collision
rate is 0%. To better illustrate the advantage of the proposed
method, a comparison with traditional CBF with fixed α is
made as shown in Fig. 3. The proposed method updates α
in the green zone, while traditional CBF does not, which
leads to solution infeasibility from t = 77 to t = 194 and
violation of the minimum safety distance requirement. The
proposed method maintains solution feasibility consistently
and performs the merging safely.

Vehicle behavior factors-Effect of the CBF parameter
α: The choice of the CBF parameter α is a key factor in
shaping a vehicle’s behavior. Generally, the larger α is, the
more admissive action space the ego vehicle will have. To
verify this statement, ego vehicle behaviors with different
α values are compared. For better visualization effect, we
observe ego vehicle merging control with a single merging



Fig. 3: Comparison of the proposed method with traditional CBF
with fixed α. The green zone indicates the time interval when α
is updated in the proposed method to guarantee solution feasibility
and therefore safety. The traditional CBF solution with fixed α
becomes infeasible starting from this interval and eventually leads
to collision with distance smaller than Rsafe = 8.

Fig. 4: How α affects the ego vehicle’s behavior (Merging behind).
The smaller α is, the earlier the ego vehicle will brake to keep the
distance strictly. Larger α will allow the ego vehicle to approach
the merging vehicle more quickly, and to brake as late as possible.

vehicle, while the initial conditions of the ego vehicle and
the profile of the merging vehicle are kept the same to make
the comparison fair. The results are shown in Fig. 4 and
Fig. 5 (Rsafe = 8 m). Before t = 40 (Fig. 4) and t = 100
(Fig. 5), all trials share exactly the same states, meaning the
CBF is not active yet, and therefore the value of α does not
make any difference in the ego vehicle’s behavior. After those
times, the ego vehicle decides to decelerate or accelerate at
a certain point. The smaller α is, the earlier the deceleration
or acceleration decision is made to avoid collision in future
steps. In other words, the larger α is, the more aggressive the
driving strategy is for the ego vehicle, and the deceleration
as a precautionary action is more and more delayed.

Fig. 5: How α affects the ego vehicle’s behavior (Merging in the
front). While the ego vehicle passes the merging vehicle around
t = 90 in Fig. 5, smaller α makes the ego vehicle accelerate as
early as possible to prevent getting too close to the merging vehicle
in the future, and larger α tends to make the ego drive with ū as
long as possible while getting closer to the merging vehicle, and
only increases acceleration when necessary.

Fig. 6: Illustration of the ego vehicle’s initial positions in two
cases, where m1,m2 represent the first and the second merging
vehicle. The behavior of the two merging vehicles remains the same
in the two cases. where m1 and m2 have constant velocity. As the
initial condition, vm2 > vm1 . The minimum allowed safety distance
Rsafe is set to 5 m.

Fig. 7: Comparison of different merging strategies for case 1 (a) and
case 2 (b). In case 1, ve = vm1 +2. While performing conservative
merging, with α = 1, the ego vehicle merges in between m1

and m2 safely. The ego vehicle keeps the distance to both of
the merging vehicles without much change. While performing
aggressive merging, with α = 15, the ego vehicle merges in front of
m2 safely. The ego vehicle accelerates obviously and completes the
merging around t = 95, and the distance to both merging vehicles
increases after that. In case 2, ve = vm1 − 2. While performing
conservative merging, with α = 1, the ego vehicle merges after m1

safely. The ego vehicle accelerates while maintaining the required
safety distance. While performing aggressive merging, with α = 15,
the ego vehicle merges in between the two merging vehicles safely.
The ego vehicle accelerates to pass m1 and merges in between m1

and m2. It keeps approaching m2 until it decreases its acceleration
to meet the future safety guarantee.

Vehicle behavior factors-Effect of initial conditions:
The initial conditions also affect the merging behavior of the
ego vehicle. Consider the merging control with two merging
vehicles, shown in Fig. 6 with three different slots available
to merge in. Whether the ego vehicle can merge into any of
the three slots depends on the initial conditions, including
relative distance and speed, as well as the nominal acceler-
ation ū set for the ego vehicle to follow and the minimum
allowed safety distance Rsafe. Intuitively, if Rsafe is set to
be very large, the ego vehicle has to keep far enough from
both of the merging vehicles, and that makes it difficult for
it to squeeze into the gap between the two merging vehicles
without breaking the minimum safety distance requirement.
Besides, the relative distance and relative speed also matter.
Together with ū, they decide the reachability set for the ego
vehicle, which is the set of positions the ego vehicle can
achieve. We take a look at two specific cases for detailed
illustration. The experimental results are shown in Fig. 7. The
ego vehicle’s initial positions for the two cases are shown in
Fig. 6.



VI. CONCLUSION

We present an adaptive merging control algorithm for
AVs in the ramp merging scenario with probabilistic safety
guarantee. Experiments with different conditions are used
to demonstrate the power of CBF in applying different
driving strategies to the ego vehicle via a single parameter
α. The proposed method provides a theoretically consistent
solution feasibility analysis with explicit bounds on the
CBF parameter α. In future work, we plan to combine the
proposed framework with learning-based methods that use
real-world datasets to realize safe control with a data-driven
approach to determine the appropriate strategy.
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