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Abstract— A reinforcement learning (RL) policy trained in a
nominal environment could fail in a new/perturbed environment
due to the existence of dynamic variations. Existing robust
methods try to obtain a fixed policy for all envisioned dynamic
variation scenarios through robust or adversarial training.
These methods could lead to conservative performance due
to emphasis on the worst case, and often involve tedious
modifications to the training environment. We propose an
approach to robustifying a pre-trained non-robust RL policy
with £, adaptive control (£;AC) [1]. Leveraging the capability
of an £;AC law in fast estimation of and active compensation
for dynamic variations, our approach can significantly improve
the robustness of a RL policy trained in a standard (i.e.,
non-robust) way, either in a simulator or in the real world.
Numerical experiments are provided to validate the efficacy of
the proposed approach.

I. INTRODUCTION

Reinforcement learning (RL) is a promising way to solve
sequential decision-making problems [2]. In the recent years,
RL has shown impressive or superhuman performance in
control of complex robotic systems [3]-[5]. An RL policy
is often trained in a simulator and deployed in the real
world. However, the discrepancy between the simulated and
the real environment, known as the sim-to-real (S2R) gap,
often causes the RL policy to fail in the real world. An
RL policy may also be directly trained in a real-world
environment; however, the environment perturbation result-
ing from parameter variations, actuator failures and external
disturbances can still cause the well-trained policy to fail.
Take a delivery drone for example (Fig. 1). We could train an
RL policy to control the drone in a nominal environment (e.g,
nominal load, mild wind disturbances, healthy propellers,
etc.); however, this policy could fail and lead to a crash when
the drone operates in a new environment (e.g., heavier loads,
stronger wind disturbances, loss of propeller efficiency, etc.).
To a certain extent, the S2R gap issue can be considered
as a special case of environment perturbation by treating
the simulated and real environments as the old/nominal and
new/perturbed environments, respectively.
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Fig. 1: Proposed £1-RL framework for policy robustification
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To deal with the S2R gap issue, existing robust meth-
ods aims to improve the policy robustness through domain
randomization [6]-[8] or adversarial training [9]. However,
due to reliance on a fixed policy for all the scenarios, these
methods often lead to conservative performance, and can
only handle a small range of dynamic variation. Moreover,
these methods often need tedious modifications to the train-
ing environment, which are most suitable for RL training in
a simulated environment.

In this paper, we propose a framework to robustify an RL
policy leveraging £, adaptive control (£;AC) [1], which we
term as £1-RL, and is illustrated in Fig 1. The essential idea
of £1AC is to actively and quickly estimate the dynamic
uncertainties and use the estimated value to compute the
control input to compensate for these uncertainties — within
the bandwidth of the control channel — so that the actual
uncertain or perturbed system behaves like a nominal model.
A unique feature of £,AC is the decoupling of the esti-
mation loop from the control loop. This decoupling allows
the use of fast adaptation, desired for quickly estimating
the (potentially fast-varying) dynamic uncertainties, without
sacrificing robustness. Different from most of existing policy
robustification methods based on domain randomization or
adversarial training [6]-[9], our £;-RL framework can be
used to robustify an RL policy, trained in the standard
(i.e., non-robust) way, either in a simulator or in the real
world. The core of L£{-RL is the built-in £;AC scheme
which quickly estimates and compensates for the dynamic
variations such that the perturbed environment is close to
the nominal environment, where the RL policy is expected
to function well.

A. Related work

Robust/adversarial training. Domain/dynamics randomiza-
tion was proposed to close the sim-to-real S2R) gap [6]—



[8] when transferring a policy from a simulator to the real
world. Robust adversarial training addresses the S2R gap
and environment perturbations by formulating a two-player
zero-sum game between the agent and the disturbance [9].
These methods involve tedious modifications to the training
environment, which can mostly happen in a simulator. More
importantly, the resulting policies trained in this way could
overfit to the worst-case scenarios, and thus lead to conser-
vative or degraded performance in other cases [10].

Active dynamic variations compensation. Kim et al. [11]
proposed to use an disturbance-observer (DOB) to improve
the robustness of an RL policy, in which the mismatch
between the simulated training environment and the testing
environment is estimated as disturbance and compensated
for. A similar idea was pursed in [12], which used a model
reference adaptive control (MRAC) scheme to estimate and
compensate for parameteric uncertainties. Our objectives are
similar to the ones in [11] and [12], but our approach is
fundamentally different, as we consider a broader class of
dynamic uncertainties (e.g., unknown input gain that cannot
be handled by [11], and time-dependent disturbances that
cannot be handled by [12]), and — with the help of £
adaptive controller — we ensure guaranteed, scalable and
predictable transient performance.

Learning to adapt. Meta-RL has recently been proposed
to achieve fast adaptation of a pre-trained policy in the
presence of dynamic variations [13]-[17]. Despite impressive
performance mainly in terms of fast adaptation demonstrated
by these methods, the intermediate policies learned during
the adaptation phase will most likely still fail. This is
because a certain amount of information-rich data needs to
be collected in order to learn a good model and/or policy. On
the other hand, rooted in the theory of adaptive control and
disturbance estimation, [1], [18]-[20], our proposed method
can quickly estimate the discrepancy between a nominal
model and the actual dynamics, and actively compensate for
it in a timely manner. We envision that our proposed method
can be combined with these methods to achieve robust and
fast adaptation.

II. PROBLEM SETTING

We assume that we have access to the dynamics of an RL
agent in the nominal environment, either simulated or in the
real world, and it is described by a nonlinear control-affine
model:

i(t) = f(x(t) + g(x(t)u(t) £ Faom(x(t), u(®)), (1)

where z(t) € R™ and u(t) € R™ are the state and input
vectors, respectively, f : R” — R™ and g : R® — R™ are
known functions; moreover, g(x) has full column rank.

Remark 1. Control-affine models are commonly used for
control design and can represent a broad class of mechanical
and robotic systems. In addition, a control non-affine model
can be converted into a control-affine model by introducing
extra state variables (see e.g., [21]). Therefore, the control-
affine assumption is not very restrictive.

Remark 2. The nominal model (1) can be from physics-based
modeling, data-driven modeling or a combination of both.
Methods exist for maintaining the control affine structure in
data-driven modeling (see e.g., [22]).

We further assume that the dynamics of the agent in the
perturbed environment can be represented by

&= f(2) + (o) A@)u + d(t, 2), @)

where A(x) is an unknown input gain matrix, which is non-
singular for any z, d(¢,x) is an unknown function that can
capture parameter perturbations, unmodeled dynamics and
external disturbances.

Remark 3. Uncertain input gain is very common in real-
world systems under environment perturbations. For in-
stance, actuator failures, and variations in mass or inertia for
force- or torque-controlled robotic systems, normally induce
such input gain uncertainty. Our representation of such
uncertainty in (2) is broad enough to capture a large class
of scenarios, while still allowing for effective compensation
of such input gain uncertainty using £;AC (detailed in
Section III).

Assumption 1. We have access to a nominal policy, 7,(x),
which functions well for the nominal dynamics (1).

The policy m,(z) can be trained either in a simulator or
in the real world in the standard (i.e., non-robust) way. The
nominal policy 7y could fail in the perturbed environment
due to the dynamic variations. In this paper, we propose
a method to robustify this nominal policy so that it could
function in the presence of such dynamic variations, by
leveraging £1AC [1].

III. £1-RL FRAMEWORK FOR POLICY ROBUSTIFICATION
A. Overview of the L1-RL framework

The idea of our proposed £;-RL framework is depicted
in Fig. 1. Within £,-RL, the fraining phase is standard:
the nominal policy can be trained using standard methods
in a nominal environment, which does not need domain
randomization or adversarial training. During policy execu-
tion, an L1 controller uses the nominal dynamics (1) as an
internal nominal model, estimates the discrepancy between
the nominal model and the actual dynamics and compensates
for this discrepancy so that the actual dynamics with the L£q
controller (illustrated by the shaded area of Fig. 1) behaves
like the nominal dynamics. Since the RL policy works well
under the nominal dynamics, it is expected to work well in
the presence of dynamic variations and the £; augmentation.

B. RL training for the nominal policy

As mentioned before, the policy can be trained in the stan-
dard way, using a large amount of RL methods including both
model-free and model-based ones. The only requirement is
that one has nominal dynamics of the training environment
in the form of (1).

As an illustration of the idea, in the numerical experiments,
we choose PILCO [23], a model-based policy search method,



and a trajectory optimization method based differential dy-
namic programming (DDP) [24], [25] to obtain the nominal
policy.

C. Ly augmentation for policy robustification

In this section, we explain how an £;AC law can be
designed to augment the nominal policy to improve its
robustness. An £; controller mainly consists of three com-
ponents: a state predictor, an adaptive law, and a control
law. The state predictor is used to predict the system’s state
evolution, and the prediction error is subsequently used in the
adaptive law to update the disturbance estimates. The control
law aims to compensate for the estimated disturbance. For the
perturbed system (2) with the nominal dynamics (1), these
components are detailed as follows. The state predictor is
defined as:

&= Foom(z,u) + g(2)6m (1)) + g (2)6um(t) — ai, (3)
where & £ & — z is the prediction error, a is a positive
scalar, 6,,,(t) and Gy, (t) are the matched and unmatched
disturbance estimates', respectively, g* () € R"~™ satisfies
g(z)Tgt(x) = 0, and rank[G(z)] = n for any x with
G(z) £ [g(x) g*(x)]. Note that unmatched disturbances (or
mismatched disturbances used in the disturbance-observer
based control literature [20]) cannot be directly canceled
by control signals and are generally challenging to deal
with. Following the piecewise-constant (PWC) adaptive law
(which connects with the CPU sampling time) [1, Sec-
tion 3.3], the disturbance estimates are updated as

601 [0 mor am,

Gum (t) Gum (iT) “
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where T is the sampling time. The control law (applied to
the actual system) is defined as

u(s) =~ Ki(s), ©

where K € R™*™ is a feedback gain matrix, 7j(s) is the
Laplace transform of 7j(t) = wou(t) + 6m (t) — ure(t) with
wg € R™*™ being a nominal gain matrix (which is often
selected to be an identity matrix) and urp(t) = mo(z(t))
being the control command from the nominal RL policy
mo(t). For details on deriving the estimation and control laws,
readers can refer to [26], [27]. It is worth emphasizing that
the control law only compensates for the matched estimated
disturbance (6,,,) by directly canceling it, and a feedback
structure is introduced in (5) to compensate for the effect
of unknown input gain A(z), which computes the ultimate
control command using &,,, and ugy .

'In a £1AC scheme with a piecewise constant adaptive law [1, sec-
tion 3.3], all the dynamic uncertainties (parametric uncertainties, unmodeled
dynamics, external disturbances, etc) are lumped together and estimated as
disturbances.

IV. NUMERICAL EXPERIMENTS

We now present the numerical experiments on a sim-
ple cart-pole benchmark problem, and a complex 12-state
quadrotor control example.

A. Cart-pole

The dynamics of the cart-pole system is taken from [28].
The system states include cart position (z.) and velocity (z.),
and pole angle (f) and angular velocity (0). The input is
the force applied to the cart. The nominal value of the key
parameters in the dynamics are m, = 0.5 kg (cart mass),
mg = 0.5 kg (pole mass), I = 0.6 m (pole length). The
pole is roughly hanging straight down (8 = 0) with small
random perturbations at the beginning. The goal is to search
for a policy that can swing up the pole and balance it at the
straight up position (corresponding to x. = 0 and § = 180°).

We used PILCO [23] to search for a policy for the nominal
environment defined by the nominal values mentioned above.
PILCO uses Gaussian processes (GPs) [29] to learn the
systems dynamics, uses the learned dynamics together with
uncertainty propagation (e.g., based on moment matching or
linearization) to compute the cost function, and then applies
gradient descent to search for the optimal policy. PILCO
achieved unprecedented records in terms of data-efficiency
in RL.

For £1AC law design, the parameters in (3)—(5) were
chosen to be a = 10, T' = 0.002 second, wg = 1 and
K = 200.

We next perturbed the environment to test the robustness
of the nominal policy with and without £, AC augmentation.
For design of the £,AC law we used the physics-based
model with the nominal parameter values as the nominal
model, instead of the GP model learned during policy train-
ing, for simplicity. Fig. 2 shows the results in the presence
of perturbations in the cart mass and pole length. One can
see that the £; augmentation significantly improves the
robustness of the PILCO policy. For instance, PILCO plus
L, augmentation was able to consistently achieve the goal
even when the cart pass was perturbed to 3 kg (six times of
its nominal value) or when the pole length was reduced to
0.2 m (one third of its nominal value).

We further performed testing under ten scenarios from
random joint perturbations of the cart mass, pole mass and
length parameters, in the range of m; € [0.1,5], mg €
[0.1,5], lpole € [0.6,1]. The sampled parameters and the
success/failure results for each scenario are shown in Fig. 3.
Once again, the £; augmentation significantly improved the
policy robustness, as validated by the much higher mission
success rate.

B. 3-D Quadrotor

We next do experiments on a 12-state 3-D quadrotor
example. The equations of dynamics are taken from [12]
which uses Euler angles. The states include quadrotor po-
sition (z,y, 2) in an inertia frame and the roll, pitch, and
yaw angles of the quadrotor body frame with respect to the
inertial frame, as well as their derivatives. Motor mixing is
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Fig. 2: Results in the presence of perturbations in cart mass
and pole length. Ten trials were performed and average
results with variances are shown for each perturbation case.
Reward is normalized.
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Fig. 3: Results (bottom) under ten scenarios from random
perturbations of the cart mass, pole mass and length (sampled
value shown at the top)

also included in the dynamics. The inputs are the four thrusts
output of the four propellers.

The nominal value of the key parameters are set to
be [I,1,,1.] = [0.082,0.0845,0.1377] kgm? (moment of
inertia), m = 4.34 kg (qaudrotor mass), and ¢,; = 1
(2 =1,2,3,4) (propeller control coefficients). The mission in
this example is to control the quadrotor to fly from the origin
to the target point (4, 4,2). To obtain a policy for achieving
the mission, we chose to use trajectory optimization, which
together with model learning is commonly used for model-
based RL [30], [31]. We further selected to use differential
dynamic programming (DDP) [25] a specific trajectory opti-
mization method. Since our focus is not on the training but
on robustifying a pre-trained policy, we once again use the
physics-based dynamic model with the nominal parameter
values as the model “learned” in the nominal environment.
This model is used for computing the DDP policy, and for
designing the £, AC law.

For £1AC law design, the parameters in (3)—(5) were
chosen to be a = 10, T' = 0.001 second, wy = Iy and
K = 200.

We tested the performance of the DDP policy with and
without £; augmentation under three types of dynamic
perturbations. The first one is loss of propeller efficiency,

to mimic the effect of propeller failures, which are simulated
by adjusting the control coefficients c¢,; (i = 1,2,3,4).
The resulting trajectories under ten scenarios are shown
in Fig. 4. One can see that £, augmentation significantly
improved the robustness of the DDP policy, leading to
consistent trajectories that are close to the ideal trajectory
obtained by applying the policy to the nominal dynamics.
The second type of dynamic perturbations are the mass and

--DDP (ideal)

y (m) z (m)

Fig. 4: Results under loss of propeller efficiency. In each of
ten scenarios, the control coefficients of two propellers were
randomly selected to be in [0.5,1]. DDP (ideal) denotes the
trajectory obtained by applying the policy to the nominal
dynamics.

inertia change, e.g., to mimic the effect of carrying different
packages for a delivery drone. The results under ten scenarios
with randomly increased mass and inertia through a scale of
[2, 5] are shown in Fig. 5. Once again, £, augmentation sig-
nificantly improved the policy robustness, leading to close-
to-ideal trajectories. The third type of dynamic variations

--~DDP (ideal)

10
5

y (m) ° 0

Fig. 5: Results under perturbations in quadrotor mass and
inertia. In each of the ten scenarios, the mass and inertia are
scaled by a random number in [2, 5].

z (m)

is related to wind disturbances in the horizontal plane,
which causes disturbance forces to the x and y directions.
In each of the ten scenarios, the forces were simulated by
stochastic variables with the mean values randomly sampled
from [10, 25]. The results are shown in Fig. 6. £; augmen-
tation improved the robustness, but was not able to yield
close-to-ideal performance. This is mainly because the wind
disturbances will cause unmatched disturbances (o, in (3)
and (4)), which are not compensated for in the control law

(5).
V. CONCLUSION

This paper presents £1-RL, a framework for robustifying
a pre-trained reinforcement learning (RL) policy, leveraging
L1 adaptive control to quickly and actively estimate and
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Fig. 6: Results under wind disturbance. In each of the ten
scenarios, the mean value of the wind disturbance force
applied to the = and y directions were sampled from the
range of [10, 25].

compensate for the dynamic variations which could happen
during execution of this policy. Our framework allows for
the policy to be trained in a standard way (i.e., without
use of domain randomization or adversarial training), either
in a simulator or in the real world. Numerical experiments
on a simple benchmark and a 12-state quadrotor examples
illustrate the efficacy of the proposed framework.

Future work includes demonstration of the proposed
framework in a model-free RL setting, comparison of the
framework with existing robust/adversarial training based
methods [6]-[9], as well as validations on real-world ex-
periments. We also plan to incorporate the extension of
L1 adaptive control for unmatched uncertainties from [32]
to achieve improved performance for a broader class of
uncertainties.
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