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Abstract— Reinforcement Learning (RL) and continuous
nonlinear control has been successfully deployed in multiple
domains of complicated sequential decision making tasks. How-
ever, given the exploration nature of the learning process
and the presence of model uncertainty, it is challenging to
apply them on safety-critical control tasks due to the lack of
safety guarantee. On the other hand, while combining control-
theoretical approaches with learning algorithms have shown
promise in safe RL applications, the sample efficiency of safe
data collection process for control is not well addressed. In
this paper, we propose a provably sample efficient episodic
safe learning framework for online control tasks that leverages
safe exploration and exploitation in an unknown, nonlinear
dynamical system. In particular, the framework 1) extends
control barrier functions (CBFs) in a stochastic setting to
achieve provable safety under uncertainty during model learn-
ing and 2) integrates an optimism-based exploration strategy
to efficiently guide the safe exploration process with learned
dynamics for near optimal control performance. We provide
formal analysis on the episodic regret bound against the optimal
controller and probabilistic safety with theoretical guarantee.
Simulation results are provided to demonstrate the effectiveness
and efficiency of the proposed algorithm.

I. INTRODUCTION

The control of safety-critical system such robotic sys-
tems is a difficult challenge under uncertainty and lack of
complete information in the real world applications. While
Reinforcement Learning (RL) algorithms that seek for long-
term reward maximization has achieved significant results in
many continuous control tasks [1], [2], it has not yet been
widely applied to safety-critical control tasks as the rigorous
safety requirements may be easily violated by intermediate
policies during policy learning. Safe RL approaches [3]–[6]
with constraints satisfaction have been proposed to encode
safety consideration in a modified optimality criterion or
in the constrained policy exploration process with external
knowledge, e.g. an accurate probabilistic system model [6],
[7]. However, the effectiveness in preventing risky behaviors
relies on the sufficient period of policy learning where the
unsafe situations could happen in the early learning stage.

Very recently, integrating data-driven learning-based ap-
proach with model-based safe control approaches has received
significant attention to achieve model uncertainty reduction
while ensuring provable safety [8]–[15]. The process often
involves safe policy exploration with data collection from
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a nominal dynamics model and iteratively reduce learned
model uncertainty over time to expand certified safety region
of the system’s state space [8], [9], [11], [13], [14]. However,
such exhaustive data collection for safe learning could suffer
from poor scalability and low efficiency for primary task.
For example, instead of densely sampling over the space, it
may be more beneficial to guide the safe exploration process
towards task-prescribed policy optimization. Recent work
[12] incorporates the safe learning using Gaussian Process
(GP) and CBF into a model-free RL framework (RL-CBF) so
that the guided exploration process will not only learn model
uncertainty impacting safe behaviors but also optimizing
the policy performance. Nevertheless, there is no theoretical
guarantee on the learning performance in terms of sample
efficiency or the control performance for the primary task.

In this paper, we propose a provably correct method
that handles both sample efficient safe learning and online
nonlinear control task in partially unknown system dynamics.
In particular, we develop an Optimism-based Safe Learning
for Control framework that integrates 1) stochastic discrete-
time control barrier functions (CBF) to ensure forward
invariant safety under uncertainty, and 2) an optimism-
based exploration strategy that enjoys a formally provable
regret bound. We provide rigorous proofs on the guaranteed
exploration efficiency, policy optimization performance, and
safety during exploration at all times.

Our main contributions are: 1) a provably sample efficient
episodic online learning framework that integrates safe model-
based nonlinear control approaches with optimism-based
exploration strategy to simultaneously achieve safe learning
and policy optimization for online nonlinear control tasks, and
2) rigorous theoretical analysis of guaranteed safety under
learned uncertainty and near-optimal online learning and
policy performance with proved regret bound.

II. PRELIMINARIES

A. Dynamical System and Stochastic Control

Consider the following partially unknown discrete-time
control-affine system dynamics with state x ∈ X ⊂ Rn and
control input u ∈ U ⊂ Rm for a discrete time index h ∈ N

xh+1 = f̂(xh, uh) + d(xh, uh) + εh, εh ∼ N (0,Σσ) (1)

where f̂ : X × U 7→ Rn is the known nominal discrete
dynamics affine in the control input as f̂(xh, uh) = F̂ (xh) +
Ĝ(xh)uh. We assume F̂ : Rn 7→ Rn, Ĝ : Rn 7→ Rn×m are
locally Lipschitz continuous and the relative degrees of the
nominal model and the actual system are the same, which



are common assumptions as in [13], [14]. d : X × U 7→ Rn
denotes the unmodelled part of the system dynamics which
is unknown, and εh is i.i.d noise sampled from a known
Multivariate Gaussian distribution with the covariance matrix
Σσ = diag(σ2

1 , . . . , σ
2
n), i.e., σ1, . . . , σn are known to the

learner. For notation simplicity, we denote the stochastic state
transition as P (·|x, u).

In particular, we assume that d(x, u) is modelled by the
following nonlinear model, d(x, u) := W ?φ(x, u) where
φ : X × U 7→ Rr is a known nonlinear feature mapping
and the linear mapping W ? ∈ Rn×r is the unknown system
parameters that need to be learned.

The control task is described by a cost function. Given
an immediate cost function c : X × U 7→ R+, the primary
task-prescribed objective can be defined as

min
π∈Π

Jπ(x0; c,W ?) = E
[H−1∑
h=0

c(xh, uh)|π, x0,W
?
]

(2)

where x0 ∈ X is a given starting state and Π is some set of
pre-defined feasible controllers. Each controller (or a policy)
is a mapping π ∈ Π : X 7→ U . We denote Jπ(x; c,W ) as
the expected total cost of a policy π under cost function c,
initial state x0, and the dynamical system in Eq. 1 whose
d(x, u) is parameterized by W . In order to achieve optimal
task performance, we need to learn the unmodelled d(x, u)
by taking samples to approximate to the true linear mapping
W ? and enforce safety constraints at all times.

B. Discrete-time Control Barrier Functions For Gaussian
Dynamical Systems

Consider a stochastic Gaussian discrete-time dynamics
described in Eq. 1. A desired safety set x ∈ S ⊂ X can be
denoted by the following safety function hs : Rn 7→ R

S = {x ∈ Rn : hs(x) ≥ 0} (3)

Formally, a safety condition is forward invariant if xh=0 ∈ S
implies xh ∈ S for all h > 0 with some designed controller
u ∈ U . Control barrier functions (CBF) [16] are often used
to derive such designed controllers that enforce the forward
invariance of a set of the system state space.

Definition 1. [Discrete-time Control Barrier Function under
Known Gaussian Dynamics] Assume hs(·) is L-Lipschitz
continuous when x ∈ X is bounded. Given δ ∈ (0, 1) and
horizon H , let S be the 0-superlevel set of hs : Rn → R
which is a continuously differentiable function. We call hs(·)
a stochastic discrete-time control barrier function (CBF) for
dynamical system Eq. 1 if there exists a η ∈ (0, 1), such that
for all time steps h = 0, . . . ,H − 1, given any x ∈ S:

sup
u∈U

[
hs
(
f̂(x, u) + d(x, u)

)
− Lσ̄

√
2n ln

(
Hn

δ

)

− hs(x)

]
≥ −ηhs(x) (4)

where σ̄ = max{σ1, . . . , σn}.

Proposition 2 (Forward Invariant with High Probability).
Consider a control barrier function hs(·) in Definition 1.
Given x0 ∈ S, consider any policy π : X → U such that
at any state x, this policy outputs an action u = π(x) that
satisfies the constraint Eq. 4. Then executing π to generate
a trajectory starting at x0: τ = {x0, u0, . . . , xH−1, uH−1},
with probability at least 1 − δ we have h(xh) ≥ 0 for all
h ∈ [H], i.e., all states on the trajectory belong to the safe
set S.

C. Learning Objective
If we had knew the unmodelled dynamics d(·), i.e., the

whole stochastic Gaussian dynamical system in Eq. 1 is
known, then the safe nonlinear control problem can be
modeled as follows:

min
π∈Π

Jπ(x0; c), (5)

s.t.,∀x ∈ X , hs
(
f̂(x, π(x)) + d(x, π(x))

)
− Lσ̄

√
2n ln

(
Hn

δ

)
− hs(x) ≥ −ηhs(x)

(6)

In our episodic finite horizon learning framework, we start
with some initialization W 0 which is used to parameterize
d0(x, u) := W 0φ(x, u) (we will discuss conditions on W 0

in Section III-A that can ensure safety during the entire
learning process). At every episode t, the learner will propose
a policy πt ∈ Π (probably based on the current guess dt(x, u)
with W t), execute πt in the real system to generate one
trajectory {xt0, ut0, . . . , xtH−1, u

t
H−1} for H time steps; the

learner then incrementally updates model parameter to W t+1

using observations from all of the past trajectories, and move
to the next episode t+ 1 starting from the same initial state
x ← x0. The ideal goal of the learner is to ensure that πt
is safe (with high probability) in terms of satisfying CBF
constraint Eq. 4, and also optimize the cost function over
episodes:

RegretT :=

T−1∑
t=0

H−1∑
h=0

c(xth, u
t
h)−

T−1∑
t=0

Jπ
?

(x0; c) = o(T ),

(7)

Namely, comparing to the best policy π? (i.e., the optimal
solution of the constrained optimization program in Eq. 5 if
assuming perfect model information), the cumulative regret
grows sublinearly with respect to the number of episodes
T . To that end, the goal in this paper is to minimize the
cumulative regret in Eq. 7 subject to safety constraint in
Eq. 6 at all times in each episode. Next, we will discuss
how to enforce such safety constraint with d learned online
and provide the episodic safe learning algorithm to achieve
bounded regret in Eq. 7 with rigorous analysis.

III. ALGORITHM AND ANALYSIS

A. Approximate Safety Guarantee
We compute W 0 (the initialization parameters of d(x, u))

via ridge linear regression under known feature mapping



φ : X × U 7→ Rr:

W 0 = arg min
W

N∑
i=1

∥∥∥Wφ(xi, ui)− (x′i − f̂(xi, ui))
∥∥∥2

2
+ λ‖W‖2F

(8)

where λ is a regularizer parameter and ‖W‖F is the Frobenius
norm of the model parameter matrix W ∈ Rn×r. Denote the
initial empirical regularized covariance matrix as

V0 =

N∑
i=1

φ(xi, ui)φ(xi, ui)
> + λI (9)

The following assumption states that we will have d0(x, u) =
W 0φ(x, u) as a reasonable good estimate of d(x, u) =
W ?φ(x, u) for all x, u ∈ X × U (note that however we
cannot guarantee W 0 will be close to W ? in terms of `2
norm).

Assumption 3. After deriving W 0, V0 in Eq. 8, 9 from the
initial data (xi, ui, x

′
i)
N
i=1, we can build the initial confidence

ball describing the uncertain region of W ? as follows:

Ball0 =
{
W :

∥∥(W −W 0)V0

∥∥
2
≤ β, ‖W‖2 ≤ ‖W ?‖2

}
(10)

where β is the confidence radius as β :=
√
λ‖W ?‖2 +

σ
√

8n ln(5) + 8d ln (1 +N/λ) + 8 ln(1/δ).

Then in the following we can show that for any W̃ ∈ Ball0,
it’s prediction d̃(x, u) = W̃φ(x, u) for any given x, u is close
to the true prediction d(x, u) = W ?φ(x, u) from W ?.

Lemma 4. Assume the condition in Assumption 3 holds. For
all W̃ ∈ Ball0, we have:

∀x, u ∈ X × U :
∥∥∥(W̃ −W ?

)
φ(x, u)

∥∥∥
2
≤ O (ε) .

This ensures that when we control our dynamical system
using CBF with any model W̃ ∈ Ball0, we can ensure safety
update to O(ε).

Theorem 5 (Policy for Approximate Safety Guarantee with
Learned Dynamics). Assume the conditions in Assumption 3
hold. Consider any W̃ ∈ Ball0, and define any policy πs :
X 7→ U that satisfies the CBF constraint parameterized by
W̃ , i.e.,

∀x ∈ X : πs(x) ∈ Ux :=

{
u : hs

(
f̂(x, u) + W̃φ(x, u)

)
−

Lσ̄

√
2n ln

(
Hn

δ

)
≥ (1− η)hs(x)

}
(11)

Then with probability at least 1 − δ, starting at any safe
initial state hs(x0) ≥ 0, πs generates a safe trajectory
{x0, u0, . . . , xH−1, uH−1}, such that for all time steps h ∈
[H], hs(xh) ≥ −O(Lεη ), where L is the Lipschitz constant
of hs(·) under bounded x ∈ X .

Thus the initialization step narrows down the search region

for W ? and we have W ? ∈ Ball0 with probability at least
1− δ. Later on, when we improve our model during iterative
learning, as long as we restrict our model W̃ to Ball0, we
guarantee that any policy that satisfies the CBF constraint
under W̃ (Eq. 11) is guaranteed to be approximately safe in
the sense of Theorem 5. Now we move to iterative learning
where we aim to search for a policy using an optimism-based
algorithm that performs as good as the best benchmark π? in
the sense of minimizing regret defined in Eq. 7 and subject
to Eq.11.

B. Optimism-based Safe Learning for Control with Regret
Analysis

To achieve no-regret performance for efficient safe learning
for control, we leverage the LC3 algorithm developed in
[17] for strategic exploration. Here we modify the policy
selection step in LC3 to take our CBF constraint Eq. 5
into consideration and thus ensures approximate safety (i.e.,
Theorem 5). Meanwhile, similar to LC3, we also need to
leverage the principle of optimism in the face of uncertainty
to achieve small regret and with safety guarantee. We propose
the framework of Optimism-based Safe Learning for Control
(Algorithm 1) that seeks to minimize the cumulative regret
for optimal online control performance with safety guarantee.

Algorithm 1 Optimism-based Safe Learning for Control

Input: CBF hs, cost function c, initial data (xi, ui, x
′
i)
N
i=1,

initial confidence region Ball0 with W 0,Σ0, number of
training episodes T , horizon H , regularizer λ, initial state
x0

Output: a sequence of policies for t = 0, ..., T

1: for t = 0, . . . , T do
2: xt0 ← x0

3: Sample W̃t ∼ N (W t,Σ
−1
t ) # Thompson

Sampling for Exploration

4: πts ← arg minπ∈Π
W̃
Jπ(xt0; c, W̃t) # Safe MPC

Planning

5: Execute πts to sample a trajectory τ t :=

{xth, uth, cth, xth+1}
H−1
h=0 # Execution and Data

Collection

6: W t+1,Σt+1 ← Update Ballt+1 # Model

Update
Return a sequence of policies for t = 0, ..., T

LC3 [17] shows that with probability 1 − δ, for all t,
W ? ∈ {W : ‖(W −W t)Σ

1/2
t ‖2 ≤ βt}. In our Theorem we

prove that with probability at least 1−δ, W ? ∈ Ball0. Hence it
is not hard to see that with probability at least 1−2δ, we have
W ? ∈ Ball0 ∩

{
W : ‖(W −W t)Σ

1/2
t ‖2 ≤ βt

}
:= Ballt in

our case.
Then we consider the safety constraint. Given any model

W̃ ∈ Ballt, we constrain our policy class Π based on the
CBF constraint under W̃ (Eq. 11), i.e., we denote Π

W̃
as



(a) (b) (c)

Fig. 1: Performance curves of (a) cumulative rewards, (b) maximum theta angle, and (c) minimum theta angle in Inverted
Pendulum environment testing under the same initial condition.

(a) (b) (c)

Fig. 2: Performance curves of (a) cumulative rewards, (b) maximum theta angle, and (c) minimum theta angle in Inverted
Pendulum environment with different initial conditions.

follows:

Π
W̃

=

{
πs ∈ Π : ∀x ∈ X ,

πs(x) ∈
{
u : hs

(
f̂(x, u) + W̃φ(x, u)

)
− Lσ̄

√
2n ln

(
Hn

δ

)
≥ (1− η)hs(x)

}}
(12)

With this now we select our model and policy optimistically
at each episode t, i.e.,(

Wt, π
t
)

:= arg min
W̃∈Ballt

arg min
π∈Π

W̃

Jπ(xt0; c, W̃ ). (13)

Then given Eq. 13 and conditioned on the high probability
event that W ? ∈ Ballt, and π? ∈ ΠW? by definition of π?,
we can easily show optimism in the sense that:

Jπ
t (
xt0; c,Wt

)
≤ Jπ

?

(x0; c,W ?).

The optimism allows us to prove the following main state-
ment.

Theorem 6 (Main Result). Set λ = σ̄2/‖W ?‖22. Our
algorithm learns a sequence of policies π0, . . . , πT−1 in

T episodes, such that in expectation, we have:

E [RegretT ] ≤ Õ
(
H
√
Hr(r + n+H)T

)
.

Also with probability at least 1−O(δ), we have that for all
t ∈ [T ], hs ∈ [H], h(xth) ≥ −O(Lε/η).

With the setup of the optimism, the proof for the regret
bound part of the above theorem is mainly following the
proof of the main theorem of LC3 from [17]. The proof for
the safety part of the above theorem comes from the fact that
W t ∈ Ball0 via the selection rule and the definition of Ballt,
and based on Theorem 5, we know that each trajectory is
approximately safe with high probability.

IV. RESULTS

We use the inverted pendulum modified from the Ope-
nAI gym environment [18] with additive disturbance of
0.05 cos(θt − 3) on state update to demonstrate the learning
performance for control task. The pendulum has ground
truth mass m = 1 and length l = 1, and is controlled
by the limited torque input u ∈ [−15, 15]. The standard
cost function c = θ2 + 0.1θ̇2 + 0.001 is used to learn the
optimal policy keeping the pendulum upright (i.e. θ = 0).
The control barrier functions hs1 = θ + 1/8π ≥ 0 and
hs2 = 5/4π − θ ≥ 0 are designed to describe the safety
constraint θ ∈ [−1/8π,+5/4π] radians. We define the true



system dynamics as θt+1 = θt + θ̇t+1∆t+ 0.05 cos(θt − 3)
and θ̇t+1 = θ̇t + 3g

2l sin θt∆t+ 3
ml2u∆t.

To describe the partially known system dynamics, we
assume a nominal model as θt+1 = θt + θ̇t+1∆t and
θ̇t+1 = θ̇t + 3g

2l′ sin θt∆t + 3
m′l2u∆t with incorrect model

parameters m′ = 1.8, l′ = 1.8 available to the learner (hence
80% error in model parameters). Using the same and different
initial conditions respectively, Figure 1 and Figure 2 compare
the cumulative rewards, maximum and minimum theta angle
achieved during testing after each training episode by using
(1) MPPI [19] with ground-truth dynamics model (GT-MPPI),
(2) MPPI with nominal dynamics model and CBF (Nom-
MPPI-CBF), (3) our method of optimism-based safe learning
(Algorithm 1), (4) our method with exploitation only, i.e.
replace Line 3 in Algorithm 1 by W̃t ← W t (Nom-MPPI-
CBF-Exploitation), and (5) unconstrained Lower Confidence-
based Continuous Control algorithm (LC3) [17]. The last three
learning-based algorithms are trained for 50 episodes with 20
testing trials after each training episode averaged from four
random seeds. It is observed that our method quickly increased
cumulative reward in early stage while satisfying the safety
constraints as learning process evolves, and our method using
exploration behavior (our method) is able to increase reward
even faster than our method using exploitation behavior
(Nom-MPPI-CBF-Exploitation), empirically implying sample
efficiency. In contrast, GT-MPPI and LC3 severely violate
angle limitation due to lack of safety consideration, and safe
MPPI using CBF with nominal model (Nom-MPPI-CBF) still
violates safety constraints with lower cumulative rewards due
to the inaccurate nominal model with large error.

V. CONCLUSION

In this paper, we address the problem of episodic safe
learning for online nonlinear control tasks. Unlike previ-
ous safe learning and control approaches that exhaustively
expanding safety region or optimizing policy performance
without efficiency guarantee, we propose an optimism-based
online safe learning framework that simultaneously achieve
sample efficient learning for safe behaviors and nonlinear
control optimization with bounded regret guarantee. Future
work include real-world implementations to solve more
complex robotic control task with uncertainty and extensions
to sample efficient robotic dynamics learning with higher
relative degrees system.
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